Introduction Fi	inite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00 00	0	000	0000	00	

Convergence of adaptive finite element methods for elliptic eigenvalue problems with applications in Photonic Crystals

Stefano Giani and Ivan G. Graham

School of Mathematical Sciences University of Nottingham

MFO, August 2009

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Introduction

Model Problem

Finite Element Methods (FEMs)

Finite Element Methods (FEMs)

A posteriori error estimator

Reliability Efficiency Adaptivity

Convergence Proof

The Convergent Method Convergence Proof

Numerics

Photonic Crystal Fibers Periodic Structure Defect modes

Summary

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
0	00	000	0	00	
		0	000	000	
		00000		000	

Model Problem

Let Ω be a bounded polygonal domain in \mathbb{R}^2 (or a bounded polyhedral domain in \mathbb{R}^3) Problem: cock eigenpairs (), μ) of the problem

Problem: seek eigenpairs (λ, u) of the problem

$$\begin{cases} -\nabla \cdot (\mathcal{A} \nabla u) = \lambda \mathcal{B} u & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

We assume that \mathcal{A} and \mathcal{B} are both piecewise constant on Ω and that:

 $\forall \xi \in \mathbb{R}^d \quad \text{with} \quad |\xi| = 1, \quad \forall x \in \Omega, \quad 0 \ < \ \underline{a} \ \le \ \xi^T \mathcal{A}(x) \xi \ \le \ \overline{a} \ ,$

and \mathcal{A} is symmetric and

 $\forall \mathbf{x} \in \Omega, \quad \mathbf{0} < \underline{b} \leq \mathcal{B}(\mathbf{x}) \leq \overline{b}.$

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Variational Formulation

$$\int_{\Omega} \mathcal{A} \, \nabla \, \boldsymbol{u} \cdot \nabla \, \boldsymbol{v} \, d\boldsymbol{x} = \lambda \, \int_{\Omega} \mathcal{B} \, \, \boldsymbol{u} \, \, \boldsymbol{v} \, d\boldsymbol{x} \, .$$

$$\begin{aligned} \mathbf{a}(u,v) &:= \int_{\Omega} \mathcal{A} \, \nabla u \cdot \nabla v \, dx, \\ \||v\||_{\Omega} &:= \mathbf{a}(v,v)^{1/2}, \\ \mathbf{b}(u,v) &:= \int_{\Omega} \mathcal{B} \, u \, v \, dx. \end{aligned}$$

Variational Problem: seek eigenpairs $(\lambda, u) \in \mathbb{R} \times H_0^1(\Omega)$ such that

$$\begin{cases} a(u, v) = \lambda b(u, v) & \text{for all } v \in H_0^1(\Omega) , \\ \|u\|_{0,\Omega} = 1 . \end{cases}$$

Nottingham

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	•0	000 0 00000	0000	00 000 000	

The Ritz-Galerkin Method

Let V_n be a finite dimensional space such that: $V_n \subset H_0^1(\Omega)$: Seek eigenpairs $(\lambda_n, u_n) \in \mathbb{R} \times V_n$ such that

 $\left\{ \begin{array}{ll} a(u_n,v_n) \ = \ \lambda_n b(u_n,v_n) \quad \text{for all } v_n \in V_n \ , \\ \|u_n\|_{0,\Omega} \ = \ 1 \ . \end{array} \right.$

- T_n conforming and shape regular triangulation of Ω ,
- V_n space of piecewise linear functions over T_n
- S_n is the set of the internal edges of the triangles of T_n .

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	0.	000	0	00	
		0	000	000	
		00000		000	

Standard Convergence Results

For H_n^{max} small enough:

$$|\lambda - \lambda_n| \leq C_{spec}^2 (H_n^{max})^{2s},$$

and

$$\||\boldsymbol{u} - \alpha_n \boldsymbol{u}_n\||_{\Omega} \leq \boldsymbol{C}_{\boldsymbol{spec}}(\boldsymbol{H}_n^{\boldsymbol{max}})^{\boldsymbol{s}},$$

where s depends on the regularity if the eigenfunction.

Strang & Fix (1973), Babuška & Osborn (1991)

ntroduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Residual

Definition (Jump)

$$[g]_f(x) := \left(\lim_{\substack{ ilde{x} \in au_1(f) \ ilde{x} o x}} g(ilde{x}) \ - \ \lim_{\substack{ ilde{x} \in au_2(f) \ ilde{x} o x}} g(ilde{x})
ight), \quad ext{with } x \in f.$$

Definition (Residual)

$$R_{l}(u,\lambda)(x) := (\nabla \cdot \mathcal{A} \nabla u + \lambda \mathcal{B} u)(x), \text{ with } x \in int(\tau), \quad \tau \in \mathcal{T}_{n},$$

$$R_{F}(u)(x) := \begin{bmatrix} \vec{n}_{f} \cdot \mathcal{A} \nabla u \end{bmatrix}_{f}(x), \quad \text{with } x \in int(f), \quad f \in \mathcal{S}_{n}.$$

$$\eta_{n} := \left\{ \sum_{\tau \in \mathcal{T}_{n}} H_{\tau}^{2} \| R_{I}(u_{n}, \lambda_{n}) \|_{0,\tau}^{2} + \sum_{f \in \mathcal{S}_{n}} H_{f} \| R_{F}(u_{n}) \|_{0,f}^{2} \right\}^{1/2} \mathbb{E} \left\| \mathbb{E} \left$$

Reliability for Eigenfunctions

Theorem (Reliability for eigenfunctions)

Let (λ, u) be a simple eigenvalue of the continuous problem and let (λ_n, u_n) be the correspondent computed eigenpair. Then we have for $\mathbf{e}_n = u - \alpha_n u_n$ that

 $|||\mathbf{e}_n|||_{\Omega} \leq \mathbf{C} \ \eta_n \ + \ \mathbf{G}_n,$

where

$$G_n = rac{1}{2} (\lambda + \lambda_n) rac{b(e_n, e_n)}{|||e_n|||_\Omega}.$$

Reliability for Eigenvalues

Theorem (Reliability for eigenvalues)

Let (λ, u) be a simple eigenvalue of the continuous problem and let (λ_n, u_n) be the correspondent computed eigenpair. Then we have for $\mathbf{e}_n = \mathbf{u} - \alpha_n u_n$ that

$$|\lambda_n - \lambda| \leq C' \eta_n^2 + G'_n,$$

where

$$\mathbf{G}'_n = \eta_n \frac{1}{2} (\lambda + \lambda_n) \frac{\mathbf{b}(\mathbf{e}_n, \mathbf{e}_n)}{|||\mathbf{e}_n|||_{\Omega}} + \frac{1}{2} (\lambda - \lambda_n) \mathbf{b}(\mathbf{e}_n, \mathbf{e}_n) \ .$$

Efficiency

Theorem (Efficiency)

Let (λ, u) be a simple eigenvalue of the continuous problem and let (λ_n, u_n) be the corresponding computed eigenpairs. Then we have that the global residual estimator is bounded by the energy norm of the error as:

 $\eta_n \leq \mathbf{C}''' |||\mathbf{e}_n|||_{\Omega} + ||\mathbf{H}_{\tau}(\lambda_n \alpha_n \mathbf{u}_n - \lambda \mathbf{u})||_{\mathbf{0}, \mathcal{B}, \Omega}.$

Properties for H_n^{max} small enough:

$$\mathbf{C}^{\prime\prime\prime-1} \eta_n \leq \||\mathbf{u} - \alpha_n \mathbf{u}_n\||_{\Omega} \leq \mathbf{C} \eta_n.$$

Constants C and C''' are independent of H_n^{max} .

・ロット (雪) (日) (日)

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Marking Strategy 1

Set the parameter $0 < \theta < 1$:

mark the edges (faces) in a minimal subset \hat{T}_n of T_n such that

$$\left(\sum_{\tau\in\widehat{T}_n}\eta_{\tau,n}^2\right)^{1/2}\geq\theta\eta_n\,,$$

where

$$\eta_{\tau,n}^2 := H_{\tau}^2 \|R_I(u_n,\lambda_n)\|_{0,\tau}^2 + \frac{1}{2} \sum_{f \in S_{\tau}} H_f \|R_F(u_n)\|_{0,f}^2.$$

Introduction	Finite Elen	nent Methods	(FEMs)
00	00		

A posteriori error estimator

Convergence Proof

Numerics Summary

Bisection5

00000

- 1. Split all edges
- 2. Split one of the new edges

PROS:

- 1. A new node on each edge
- 2. A new node in the interior of the element

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summar
00	00	000	0	00	
		0	000	000	
		00000		000	

Oscillations

Oscillations:

$$osc(v_n, \mathcal{T}_n) := \left(\sum_{\tau \in \mathcal{T}_n} \|H_{\tau}(v_n - P_n v_n)\|_{\tau}^2\right)^{1/2},$$

where $(P_n v_n)|_{\tau} := \frac{1}{|\tau|} \int_{\tau} v_n$.

P. Morin, R. H. Nochetto, and K. G. Siebert (2000) Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466-488.

ntroduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Marking Strategy 2

Set the parameter $0 < \tilde{\theta} < 1$: mark the sides in a minimal subset \tilde{T}_n of T_n such that

 $\operatorname{osc}(u_n, \tilde{\mathcal{T}}_n) \geq \tilde{\theta} \operatorname{osc}(u_n, \mathcal{T}_n).$

Then we take the union of $\hat{T}_n \cup \tilde{T}_n$ and we refine all the elements in the union.

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Adaptivity Algorithm

1. Require $0 < \theta < 1$, $0 < \tilde{\theta} < 1$ and T_0

2. Loop

- **3.** Compute (λ_n, u_n) on \mathcal{T}_n
- 4. Marking strategy 1
- 5. Marking strategy 2
- 6. Refine the mesh
- 7. End Loop

Convergence for Adaptive FEMs

Convergence for Adaptive Finite Element Methods for Linear Boundary Value Problems:

Dörfler (1996), Morin, Nochetto & Siebert (2000,2002), Karakashian & Pascal (2003), Mekchay & Nochetto (2005), Mommer & Stevenson (2006), Morin, Siebert & Veeser (2007), Cascon, Kreuzer Nochetto & Siebert (2008), ...

Convergence for Adaptive Finite Element Methods for Eigenvalue Problems:

G.& Graham (2009), Dai, Xu & Zhou (2008), Carstensen & Gedicke (2009), Garau, Morin & Zuppa (2009)

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		00000	000	000	

Convergence

Theorem (Convergence Result)

Provided that λ is a simple eigenvalue and that on the initial mesh H_0^{max} is small enough, there exists a constant $p \in (0, 1)$ and constants C_0 , C_1 such that the recursive application of the algorithm yields a convergent sequence of approximate eigenvalues and eigenvectors, with the property:

 $\|\|\boldsymbol{u} - \alpha_{n}\boldsymbol{u}_{n}\|\|_{\Omega} \leq \boldsymbol{C}_{0}\boldsymbol{p}^{n},$ $|\lambda - \lambda_{n}| \leq \boldsymbol{C}_{0}^{2}\boldsymbol{p}^{2n},$

and

 $\operatorname{osc}(\lambda_n u_n, \mathcal{T}_n) \leq \mathbf{C}_1 p^n.$

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		0	000	000	
		00000		000	

Error Reduction

Theorem (Error Reduction)

For each $\theta \in (0, 1)$, exists a sufficiently fine mesh threshold H_n^{\max} and constants $\mu > 0$ and $\rho \in (0, 1)$ such that: For any $\epsilon > 0$ then inequality

 $\operatorname{osc}(u_n, \mathcal{T}_n) \leq \mu \epsilon$,

implies either

 $\||\boldsymbol{u}-\boldsymbol{\alpha}_{\boldsymbol{n}}\boldsymbol{u}_{\boldsymbol{n}}\||_{\boldsymbol{\Omega}}\leq\epsilon\,,$

or

 $|||\boldsymbol{u} - \alpha_{n+1}\boldsymbol{u}_{n+1}|||_{\Omega} \leq \rho |||\boldsymbol{u} - \alpha_{n}\boldsymbol{u}_{n}|||_{\Omega}.$

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000 0 00000	0 00•	00 000 000	

Oscillations Reduction

Theorem (Oscillations Reduction)

There exists a constant $\tilde{\rho} \in (0, 1)$ such that:

 $\operatorname{osc}(u_{n+1},\mathcal{T}_{n+1}) \leq \tilde{\rho}\operatorname{osc}(u_n,\mathcal{T}_n) + C(H_n^{\max})^2 |||u - \alpha_n u_n|||_{\Omega}.$

Introduction Finite Element Methods (FEMs)

A posteriori error estimator

Convergence Proof

Numerics Summary

Photonic Crystal Fibers (PCFs)

Applications: communications, filters, lasers, switchers Figotin & Klein (1998), Cox & Dobson (1999), Dobson (1999), Sakoda (2001), Kuchment (2001),

Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004), Joannopoulos, Johnson, Winn & Meade (2008),...

S. G.

Convergence of Adaptive Finite Element Methods for Elliptic Eigenvalue Problems with Applications to Photonic Crystals.

 Introduction
 Finite Element Methods (FEMs)
 A posteriori error estimator
 Convergence Proof
 Numerics
 Summary

 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

Variational Formulation (e.g. TE)

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_\kappa(u,v) &:= \int_\Omega (
abla + i ec\kappa) u \cdot \mathcal{A}(
abla - i ec\kappa) ar v, \ & (u,v)_{0,\Omega} &:= \int_\Omega u ar v. \end{aligned}$$

seek eigenpairs of the form $(\lambda, u) \in \mathbb{R} \times H^1_{\pi}(\Omega)$, with $||u||_{0,\Omega} = 1$ such that

$$a_{\kappa}(u,v) = \lambda(u,v)_{0,\Omega}$$
 for all $v \in H^{1}_{\pi}(\Omega)$.

Energy Norm:

$$|||u|||_{\kappa,\mathcal{A},\Omega}^2 := a_{\kappa}(u,u).$$

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000 0 00000	0 000	00 •00 000	

Periodic Structure (I)

Figure: A cell of the periodic structure with A = 1 outside and A = 10000 inside and a picture of the eigenfunction corresponding to the second smallest eigenvalue for quasimomentum (0,0)

Introduction Finite Element Methods (FEMs) A posteriori error estimator Convergence Proof Numerics Summary

00

(日) (四) (日) (日) (日)

Periodic Structure (II)

Figure: An adapted mesh for the periodic structure with $\theta = \tilde{\theta} = 0.8_{\text{he university of Nottingham}}$

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Pro
00	00	000	0
		0	000

erics Summary

Periodic Structure (III)

	Uniform			Adaptive	
$ \lambda - \lambda_n $	N	β	$ \lambda - \lambda_n $	Ν	β
1.3556	400	-	1.3556	400	-
0.4567	1600	0.7848	0.6362	903	0.9291
0.1596	6400	0.7584	0.2124	2690	1.0048
0.0563	25600	0.7516	0.1237	5495	0.7571
0.01489	102400	0.7874	0.0405	15709	1.0640

Table: Comparison between uniform and adaptive refinement (with $\theta = \tilde{\theta} = 0.8$) for the second smallest eigenvalue of the TE mode problem with quasimomentum (0, 0).

$$|\lambda - \lambda_n| = \mathcal{O}(N^{-\beta}), \quad N = \# DOF.$$

Introduction	Finite Element Methods (FEMs)	A posteriori error
00	00	000
		0

Convergence Proof

Numerics Summary

00

Defect modes (I)

estimator

Figure: The structure of the supercell and the trapped mode.

Finite Element Methods (FEMs)

A posteriori error estimator Convergence Proof

(日)

Numerics Summary

Nottingham

000

Defect modes (II)

Figure: An adapted mesh for the periodic structure with $\theta = \tilde{\theta} = 0.8$.

Refinement in the interior and at the corners of the inclusions,

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Converg
00	00	000	0
		0	000

Convergence Proof

Numerics Summary

000

Defect modes (III)

Uniform				Adaptive	
$ \lambda - \lambda_n $	Ν	β	$ \lambda - \lambda_n $	Ν	β
0.5858	10000	-	0.5858	10000	-
0.1966	40000	0.7876	0.1225	20506	2.1791
0.0653	160000	0.7951	0.0579	44548	0.9659
0.0188	640000	0.8982	0.0078	220308	1.2541

Table: Comparison between uniform and adaptive refinement (with $\theta = \tilde{\theta} = 0.8$) for a trapped mode in the supercell for TE mode problem.

$$|\lambda - \lambda_n| = \mathcal{O}(N^{-\beta}), \quad N = \# DOF.$$

Introduction	Finite Element Methods (FEMs)	A posteriori error estimator	Convergence Proof	Numerics	Summary
00	00	000	0	00	
		00000	000	000	

Summary

- We prove the convergence of an adaptive finite element method for elliptic eigenvalue problems,
- The proof exploits reduction results for error and oscillations,
- Consequences:
 - The computed approximated eigenpairs are approximation of true eigenpairs,
 - For any tolerance tol > 0 the adaptive algorithm will end after a finite number of iterations.

