Marking Strategies

Convergence 00000 Numerics 00000000 Proof 000000

Convergence of adaptive FEM for elliptic eigenvalue problems

Stefano Giani and Ivan G. Graham

Department of Mathematical Sciences University of Bath

International Workshop on RELIABLE METHODS OF MATHEMATICAL MODELING St. Petersburg, 24-26 July 2007

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Model Problem

Let Ω be a convex polygonal domain bounded in \mathbb{R}^2 Problem: seek eigenpairs (λ , *u*) of the problem

$$\begin{cases} -\triangle u = \lambda u & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

Variational Problem: seek eigenpairs $(\lambda, u) \in \mathbb{R} \times H_0^1(\Omega)$ such that

$$a(oldsymbol{u},oldsymbol{v}) \;=\; \lambda(oldsymbol{u},oldsymbol{v})_{0,\Omega} \quad ext{for all }oldsymbol{v}\in H^1_0(\Omega),$$

where

$$\begin{aligned} \mathbf{a}(u,v) &:= \int_{\Omega} \nabla u \cdot \nabla v \, dx, \\ \| |v\| \|_{\Omega} &:= \mathbf{a}(v,v)^{1/2}. \end{aligned}$$

Marking Strategies

Convergence

lumerics

Proof 000000

Meshes and Discrete Problems

Define:

- T_n conforming and shape regular triangulation of Ω
- S_n is the set of the edges of the triangles of T_n ,
- V_n space of piecewise linear functions over T_n .

Problem: seek eigenpairs $(\lambda_n, u_n) \in \mathbb{R} \times V_n$ such that

 $a(u_n, v_n) = \lambda_n(u_n, v_n)_{0,\Omega}$ for all $v_n \in V_n$.

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Standard convergence results for uniform refinement

For H_n^{max} small enough:

$$|\lambda - \lambda_n| \leq C_{spec}^2 (H_n^{max})^2,$$

and

$$|||u-u_n|||_{\Omega} \leq C_{\text{spec}}H_n^{\max},$$

[Strang and Fix, 1973], [Babuška and Osborn, 1991]

Marking Strategies

Convergence 00000 Numerics

Proof 000000

A Posteriori Error Estimator

$$\eta_n := \left(\sum_{\tau \in \mathcal{I}_n} \|H_{\tau} \lambda_n u_n\|_{0,\tau}^2 + \sum_{S \in S_n} \|H_S^{1/2}[\nabla u_n]\|_{0,S}^2\right)^{1/2},$$

Properties:

1. $|||u - u_n|||_{\Omega} \leq C_{rel}\eta_n + G_n$ (Reliability)

2. $|\lambda - \lambda_n| \leq C_{rel}^2 \eta_n^2 + F_n$ (Reliability)

3. $\eta_n \leq C_{\text{eff}} |||u - u_n|||_{\Omega} + E_n$ (Efficiency)

Constants C_{rel} and C_{eff} are independent of H_n^{max} and G_n , F_n and E_n are h.o.t.

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Marking Strategy 1

Set the parameter $0 < \theta < 1$:

mark the sides in a minimal subset \hat{T}_n of T_n such that

$$\left(\sum_{\tau\in\widehat{T}_n}\eta_{\tau,n}^2\right)^{1/2}\geq\theta\eta_n,$$

where

$$\eta_{\tau,n}^{2} := \|H_{\tau}\lambda_{n}u_{n}\|_{0,\tau}^{2} + \sum_{S\in\partial\tau}\frac{1}{2}\|H_{S}^{1/2}[\nabla u_{n}]\|_{0,S}^{2}.$$

Oscillations

Oscillations: [Morin et al., 2000]

$$\operatorname{osc}(\mathbf{v}_n, \mathcal{T}_n) := \left(\sum_{\tau \in \mathcal{T}_n} \| \mathbf{H}_{\tau}(\mathbf{v}_n - \mathbf{P}_n \mathbf{v}_n) \|_{\tau}^2 \right)^{1/2},$$

where $(P_n v_n)|_{\tau} := \frac{1}{|\tau|} \int_{\tau} v_n$

Marking Strategies

Convergence

Numerics

Proof 000000

Marking Strategy 2

Set the parameter $0 < \tilde{\theta} < 1$: mark the sides in a minimal subset $\tilde{\mathcal{I}}_n$ of \mathcal{I}_n such that

 $\operatorname{osc}(u_n, \tilde{\mathcal{T}}_n) \geq \tilde{\theta} \operatorname{osc}(u_n, \mathcal{T}_n).$

Then we take the union of $\hat{T}_n \cup \tilde{T}_n$ and we refine all the elements in the union.

< • • • **•** •

- 1. Split any edge
- 2. Split one of the new edge

PROS:

- 1. A new node on each edge
- 2. A new node in the interior of the element

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Mesh Adaptivity Algorithm

- **1.** Require $0 < \theta < 1$, $0 < \tilde{\theta} < 1$ and T_0
- 2. Loop
- **3.** Compute (λ_n, u_n) on \mathcal{T}_n
- 4. Marking strategy 1
- 5. Marking strategy 2
- 6. Refine the mesh
- 7. End Loop

Marking Strategies

Convergence

Numerics

Proof 000000

Error Reduction

Theorem (Error reduction)

For each $\theta \in (0, 1)$, exists a sufficiently fine mesh threshold H_n^{max} and constants $\mu > 0$ and $\alpha \in (0, 1)$, with the following property. For any $\varepsilon > 0$ the inequality

 $\operatorname{osc}(\lambda_n u_n, \mathcal{T}_n) \leq \mu \varepsilon,$

implies either $|||u - u_n|||_{\Omega} \le \varepsilon$ or

 $|||\boldsymbol{u}-\boldsymbol{u}_{n+1}|||_{\Omega} \leq \alpha |||\boldsymbol{u}-\boldsymbol{u}_{n}|||_{\Omega}.$

Remark:

• The decay of oscillations trigs the convergence in the energy norm.

Marking Strategies

Convergence

Numerics

Proof 000000

Oscillations Reduction

Theorem

Let T_n to be a mesh and T_{n+1} a refinement of the first mesh. Let also (λ_n, u_n) and (λ_{n+1}, u_{n+1}) be to approximations of the same true eigenpair (λ, u) computed on the two meshes respectively. Then a constant $\tilde{\alpha} \in (0, 1)$ exists such that

 $\operatorname{osc}(\lambda_{n+1}u_{n+1},\mathcal{T}_{n+1}) \leq \tilde{\alpha} \operatorname{osc}(\lambda_n u_n,\mathcal{T}_n) + \mathbf{C}\lambda_n |||u - u_n|||_{\Omega}.$

Remark:

The convergence in the energy norm trigs the decay of oscillations.

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Cross Feedback

- The decay of oscillations trigs the convergence in the energy norm,
- The convergence trigs the decay of oscillations,

So:

We have a feedback loop between error and oscillations.

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Cross Feedback

- The decay of oscillations trigs the convergence in the energy norm,
- The convergence trigs the decay of oscillations,

So: We have a feedback loop between error and oscillation:

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Cross Feedback

- The decay of oscillations trigs the convergence in the energy norm,
- The convergence trigs the decay of oscillations,

So:

We have a feedback loop between error and oscillations.

Marking Strategies

Convergence

Numerics

Proof 000000

Convergence

Theorem (Convergence Result)

Provided the initial mesh is chosen so that H_0^{max} is small enough, there exists a constant $p \in (0, 1)$ and constants C_0 , C_1 and q > 1 such that the recursive application of the algorithm yields a convergent sequence of approximate eigenvalues and eigenvectors, with the property:

 $\||\boldsymbol{u} - \boldsymbol{u}_n\||_{\Omega} \leq \boldsymbol{C}_0 \boldsymbol{q} \boldsymbol{p}^n,$ $|\lambda - \lambda_n| \leq \boldsymbol{C}_0^2 \boldsymbol{q}^2 \boldsymbol{p}^{2n},$

and

 $\operatorname{osc}(\lambda_n u_n, \mathcal{T}_n) \leq \mathbf{C}_1 p^n.$

Marking Strategies

Convergence

Numerics •0000000 Proof 000000

Adaptivity for smooth problem (I)

	$ heta= ilde{ heta}=0.5$			$ heta= ilde{ heta}=0.8$		
Iteration	$ \lambda - \lambda_n $	DOFs	β	$ \lambda - \lambda_n $	DOFs	β
1	0.1350	400	-	0.1350	400	-
2	0.1177	954	0.1581	0.0529	1989	0.5839
3	0.0779	1564	0.8349	0.0176	5205	1.1407
4	0.0501	1977	1.8788	0.0073	15980	0.7877
5	0.0351	2634	1.2383	0.0024	48434	0.9836
6	0.0176	4004	0.7885	0.0009	122699	1.0673
7	0.0121	6588	0.7217	0.0003	312591	1.0083

Table: Comparison of the reduction of the error and DOFs of the adaptive method for the first eigenvalue for the Laplace problem.

Marking Strategies

Convergence

Numerics 00000000 Proof 000000

Adaptivity for smooth problem (II)

	$ heta= ilde{ heta}=0.5$			$ heta= ilde{ heta}={f 0.8}$		
Iteration	$ \lambda - \lambda_n $	DOFs	β	$ \lambda - \lambda_n $	DOFs	β
1	2.1439	400	-	2.1439	400	-
2	1.8280	1016	0.1658	0.7603	2039	0.6365
3	1.0850	1636	1.1662	0.2439	6793	0.9447
4	0.7792	12254	1.0331	0.0917	18717	0.9652
5	0.4936	3067	1.4826	0.0331	54113	0.9583
6	0.3484	4681	0.8240	0.0120	146056	1.0181
7	0.2578	7321	0.6730	0.0046	382024	0.9970

Table: Comparison of the reduction of the error and DOFs of the adaptive method for the fourth eigenvalue for the Laplace problem.

Marking Strategies

Convergence

Numerics

Proof 000000

Adaptivity for non-smooth problem (I)

$$a(u,v) = \int_{\Omega} \nabla u(x)^{T} \mathcal{A}(x) \nabla v(x) dx.$$

	$ heta= ilde{ heta}=0.5$			$ heta= ilde{ heta}=0.8$		
Iteration	$ \lambda - \lambda_n $	DOFs	β	$ \lambda - \lambda_n $	DOFs	β
1	1.1071	81	-	1.1071	81	-
2	0.7959	216	0.3364	0.4214	362	0.6452
3	0.6075	301	0.8139	0.1955	1153	0.6628
4	0.4168	437	1.0108	0.0789	2811	1.0174
5	0.2750	643	1.0762	0.0335	6534	1.0151
6	0.1989	954	0.8212	0.0172	14059	0.8687
7	0.1236	1459	1.1186	0.0066	28341	1.3621
8	0.0935	2117	0.7504	0.0033	60148	0.9123

 Table: Comparison of the reduction of the error and DOFs of the adaptive method for the first eigenvalue for the problem with discontinuous coefficients.

Sac

Adaptivity for non-smooth problem (II)

Figure: An approximation of the eigenfunction corresponding to the smallest eigenvalue.

< 口 > < 同

500

tion Marking Strategies Convergence Numerics

Adaptivity for non-smooth problem (III)

Proof

000000

5900

Figure: A refined mesh from the adaptive method corresponding to the first eigenvalue of the problem with discontinuous coefficients

< □ ▶

Marking Strategies

Convergence

Numerics

Proof 000000

Future work:

- Rid of the oscillations and the bisection5;
- Extend the result to more complicate operators:

$$a(u,v) = \int_{\Omega} (\nabla + i\kappa) u(x)^T \mathcal{A}(x) (\nabla - i\kappa) \overline{v}(x) dx.$$

Marking Strategies

Convergence

Numerics

Proof 000000

S. G. and I. Graham

A convergent adaptive method for elliptic eigenvalue problems. Preprint, BICS, 2007.

ntroduction	Marking Strategies	Convergence	Numerics	Proof
000	00000	00000	0000000	000000

S. Strang and G. J. Fix.

An Analysis of the Finite Element Method. Prentice-Hall, 1973.

 I. Babuška and J. Osborn. *Eigenvalue Problems*, in Handbook of Numerical Analysis Vol II, eds P.G. Cairlet and J.L. Lions, North Holland, 641-787, 1991.

P. Morin, R. H. Nocetto and K. G. Siebert. Data Oscillation and Convergence of Adaptive FEM. SIAM J. Numer. Anal., 38:466-488, 2000

[Proof]

Marking Strategies

Convergence

Numerics

Proof •00000

Marking Strategies

Convergence

lumerics

Proof

Proof of Convergence (I)

Lemma

For H_n^{max} small enough and taking a computed eigenpair (λ_n, u_n) converging to (λ, u) ; we have that there exists a constant q > 1 such that on any mesh T_m with m > n, which is a refinement of T_n , the corresponding computed eigenpair (λ_m, u_m) satisfies:

$|||u-u_m|||_{\Omega} \leq q |||u-u_n|||_{\Omega}.$

Remarks:

- refine the mesh could increase the error in nonlinear problems,
- the error does not blow up refining the mesh.

Marking Strategies

Convergence 00000 lumerics

Proof

Proof of Convergence (II)

We prove only the statement

 $|||u-u_n|||_{\Omega} \leq C_0 q p^n,$

so we suppose that

 $\operatorname{osc}(\lambda_n, u_n, \mathcal{T}_n) \leq C_1 p^n.$

Let's choose p and C_1 such that

 $\max\{\alpha,\tilde{\alpha}\}$

and

 $C_1 = \operatorname{osc}(\lambda_0, u_0, \mathcal{T}_0).$

Let's define C_0 as

 $C_0 = \max\{\mu^{-1} p^{-1} C_1, ||| u - u_0 |||_{\Omega}\}.$

Marking Strategies

Convergence

Numerics 00000000 Proof

Proof of Convergence (III)

Initial Step:

 $|||u-u_0|||_{\Omega} \leq C_0 \leq C_0 q,$

Marking Strategies

Convergence

Numerics 00000000 Proof

Proof of Convergence (IV)

Induction Step: We suppose that

 $|||u-u_n|||_{\Omega} \leq C_0 q p^n.$

lf

$$|||u-u_n|||_{\Omega} \leq C_0 p^{n+1},$$

then

$$|||u - u_{n+1}|||_{\Omega} \le q |||u - u_n|||_{\Omega} \le qC_0 p^{n+1}.$$

Marking Strategies

Convergence

Numerics 00000000 Proof

Proof of Convergence (V)

Induction Step: We suppose that

 $|||u-u_n|||_{\Omega} \leq C_0 q p^n.$

lf

$$|||u-u_n|||_{\Omega} > C_0 p^{n+1},$$

then

$$|||u-u_n|||_{\Omega} > C_0 p^{n+1} > \mu^{-1} C_1 p^n.$$

Marking Strategies

Convergence 00000 lumerics

Proof 00000

Proof of Convergence (VI)

In order too apply Error Reduction, we choose $\varepsilon := \mu^{-1} C_1 p^n$, and from $osc(\lambda_n, u_n, \mathcal{T}_n) \leq C_1 p^n$ we have that

 $\operatorname{osc}(\lambda_n, u_n, \mathcal{T}_n) \leq \mu \varepsilon.$

Since $|||u - u_n|||_{\Omega} > \varepsilon$ then

 $|||\boldsymbol{u}-\boldsymbol{u}_{n+1}|||_{\Omega} \leq \alpha |||\boldsymbol{u}-\boldsymbol{u}_{n}|||_{\Omega} \leq \alpha C_0 \boldsymbol{p}^n \leq C_0 \boldsymbol{p}^{n+1} \leq q C_0 \boldsymbol{p}^{n+1}.$

