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SUMMARY

In this thesis we consider a convergent adaptive finite element method for elliptic
eigenvalue problems on two/three-dimensional domains with applications in photonic
crystal fibres (PCFs). We prove the convergence of the adaptive method for simple
eigenvalues using linear finite elements. Each step of the adaptive procedure refines
elements in which an a posteriori error estimator is large and also refines elements in
which the computed eigenfunction has high oscillation. In order to treat PCF problems,
we derive an explicit a posteriori error estimator based on residuals for such problems.
We prove that the error estimator for the PCF case is reliable and efficient.

The error analysis extends the theory of convergence of adaptive methods for linear
elliptic source problems to elliptic eigenvalue problems, and in particular it deals with
various complications which arise essentially from the non-linearity of eigenvalue prob-
lems. Because of the non-linearity, the convergence result holds under the assumption
that the initial finite element mesh is sufficiently fine.

We have collected a rich set of numerical experiments showing the advantages of using
h-adaptivity and the convergence of our method. We have also developed two new
strategies to improve numerical efficiency. The purpose of the first strategy is to ap-
proximate more than one eigenvalue of a generic elliptic eigenvalue problem on a single
sequence of adapted meshes. Instead, the second strategy has been designed to solve
just PCF problems more efficiently. This second strategy takes advantage of continuity

of the bands in the spectra of PCF problems.
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Chapter 1

Introduction

1.1 The subject of the thesis

The subject of this thesis is a convergent adaptive finite element method (AFEM) for
eigenvalue problems. Eigenvalue problems arise naturally in many physical processes
and they have a lot of applications in physics and engineering. Example of applications
are in structural engineering, weather forecasting and in quantum physics.

We will consider two types of elliptic eigenvalue problems. The first type will be called
generic elliptic eigenvalue problem (with eigenpair (A, u), where u # 0) and it is defined

as follows:

-V (A(z) Vu(z)) = X B(z) u(z), in (1.1.1)

where Q is a bounded polygonal or polyhedral region in R?, with d = 2,3 and subject
to homogeneous Dirichlet boundary conditions. Moreover, A(z) is assumed to be a real
piecewise constant valued matrix and uniformly positive definite and bounded above
and below by positive numbers. Similarly B(x) is a real piecewise constant function,
which is bounded above and below by positive constants for all z € €.

The second kind of problem, which is considered in this work, is a more complicated
elliptic eigenvalue problem, which arises from wave guide applications. We are partic-
ularly interested in a new kind of wave guides called photonic crystal fibers (PCFs),
which are an evolution of standard fiber optics. In order to understand how light prop-
agates inside PCFs, it is necessary to solve an eigenvalue problem based on Maxwell’s
equations. This eigenvalue problem is hard to solve, so the standard way to treat such
a problem is to use the Floquet transform, which is also widely used in crystallography.
The action of the Floquet transform splits the PCF eigenvalue problem into a family of
easier eigenvalue problems parameterized by the value of the quasimomentum <, which

is a real vector of dimension 2 and which is defined below. The form of each problem



in the family (with eigenpair (A, u)) is
—(V +iR) - (A(z) (V+iR) u(z)) = X B(z) u(z), inQ, (1.1.2)

subject to periodic boundary conditions. The domain of problem (1.1.2) is the unit
“cell” of the underlying periodic problem, e.g. (in 2D) a square or, more generally, a
polygon with an even number of sides and with opposite sides of the same length and
with the same orientation.

Many papers have been published on problems related to PCFs, and in the last years
the field has been very active. In this work we are mainly interested in computing
eigenvalues of problems like (1.1.2) for a given geometry of the fiber, but many authors
have considered different aspects of PCF related problems. For example, in [18, 15]
the problem of optimizing the internal structure of the fiber, in order to maximize
its efficiency, has been addressed using different methods. In [15] a method based on
finite differences has been used, instead [18] it prefers finite elements. Furthermore,
in [50] non-linear eigenvalue techniques have been used on eigenvalue problems like
(1.1.2). Even if we restrict our attention only to the papers regarding the problems
considered in this work, we found that different methods have been proposed. We
have methods based on expansions of eigenfunctions, a good example of which is [22],
where the localized modes of a PCF have been approximated using expansions in
Bloch eigenfunctions. Other authors preferred analytical methods. Such a method has
been used in [23] for fibers with simple geometry, in fact analytical methods impose
considerable limitations on the geometry of the fiber that they can analysed. There
are even papers in which plane-wave expansion methods have been used, like [44, 10].
Despite all the other possibilities, we chose to use FEMs because they are already very
widely used to solve many different classes of linear and non-linear problems, and also
because they are very flexible methods. There are already some works about PCFs
based on finite element methods [8, 16, 17, 29, 33], however, until now no one has used
adaptivity on these problems.

Adaptivity is a key factor of the success of FEMs for PDE problems, because it improves
the accuracy of computations with, on the other hand, very reasonable computational
costs. In this work we implemented h-adaptivity in our methods, which consists in
subdivide or “refining” only those elements in a mesh on which some error indicator
is sufficiently large. For linear PDEs, there is a vast literature on h-adaptivity and a
posteriori error estimators [52, 2, 7, 11, 45]. However, for eigenvalue problems there
are only few works [21, 37, 53, 28].

Another kind of adaptivity that could be very useful as well for eigenvalue problems
is the hp-adaptivity. In this case, not only the size of the elements are adjusted to
improve the accuracy of the simulations, but also the order of the polynomials on each

element is tuned appropriately. The exploitation of this kind of adaptivity could be



the topic of further research.

In the last years, it has been possible to prove convergence for adaptive finite element
methods (AFEMs) for linear problems [20, 42, 40, 43, 14, 13, 41] and for some exam-
ples of non-linear problems [19]. But, for eigenvalue problems, as far as we know, the
question of convergence of AFEMs is still open and this is the first result about con-
vergence AFEM for problems (1.1.1) and (1.1.2). More recently, another work about
convergence AFEM for eigenvalue problems has appeared [12]. This work is newer
than ours and the authors were able to remove the dependence on the oscillations in

the convergence proof.

1.2 The aims of the thesis

The main aim of the thesis is to prove an efficient and convergent adaptive finite
element method for eigenvalue problems arising from PCF applications. Secondly, we
have extended the proof of convergence of our AFEM to generic elliptic eigenvalue
problems in 2D and 3D.

In order to obtain such a method we need firstly a good understanding of numerical
analysis for elliptic eigenvalue problems. Secondly, we need an error estimator, suitable
for problems (1.1.1) and (1.1.2), to drive the mesh adaptivity and for which it is possible
to prove the convergence of the method.

We paid much attention to the aspect of computational cost, too. In Chapter 5, we
present a new method to compute efficiently the solutions of a family of problems (1.1.2)
and also a method to compute many eigenvalues on the same sequence of adapted

meshes.

1.3 The main achievements of the thesis

The main achievements of this thesis can be summarized as follows.

(i) Numerical analysis for elliptic eigenvalue problems for PCFs. This analysis is an

extension of the standard analysis for elliptic eigenvalue problems [51, 6].

(ii) Explicit a posteriori error estimators based on residuals for general elliptic eigen-
value problems and for problems from PCF applications. In particular, we proved
that the error estimator for the PCF case is reliable and efficient. Then we ex-

tended the results also to the general elliptic case.

(iii) A convergent adaptive finite element method for general elliptic eigenvalue prob-

lems and for PCF eigenvalue problems.



(iv) A code to compute solutions of problems (1.1.1) and (1.1.2), which takes advan-
tage of techniques like Arnoldi’s method ARPACK [38] and the fast direct sparse
solver for linear problems ME27 [47] contained in the HSL archive.

(v) A rich set of numerical experiments showing the advantages of using h-adaptivity

and the convergence of our method.

1.3.1 Definition of the problems and notation

In this section we are going to define rigorously the problems analysed in this work.

But before that, we introduce all the necessary notation.

1.3.2 Functional spaces and norms

We are going to use mainly six different Sobolev spaces. Firstly, we are going to use
the standard L?(€2), which is a bounded polygonal or polyhedral region in R? with
d = 2,3. While, all the other functional spaces are defined below:

Definition 1.3.1 (Weighted L? spaces). Let B be a positive and bounded function on
Q, which is a bounded polygonal or polyhedral region in R, with d = 2,3. The leg space
on  is defined as the set

LE(Q) ={f: 2~ C: | flopa < +oo},

in which the norm || - |jo g is defined as follows:

1/2
1flosa = ( /Q B(w)!f<w)!2dw> ,

where the integral to be understood in the Lebesgue sense.

Definition 1.3.2 (Sobolev space H'). Let Q be a bounded polygonal or polyhedral
region in RY, with d = 2,3. Then, the Sobolev space H' on Q is defined as

HY(Q) ={f:Q—C, feL*Q:|fla < oo},

2\ 1/2
)
0,Q

)

where the norm is defined by

o*f

xOé

1flha = ( 3

lal<1

with o a multi-index.



Definition 1.3.3 (Sobolev space H&) Let Q be a bounded polygonal or polyhedral
region in R, with d = 2,3. Then, the Sobolev space H} on Q is the subspace of H(Q)

containing only the elements with trace equal to 0 on the boundary of ).

Definition 1.3.4 (Sobolev space H'). Let Q C R? be a polygon with an even number
of sides and with opposite sides of the same length and with the same orientation.
Then, the Sobolev space H} on Q is the subset of H () containing only the elements

satisfying periodic boundary conditions on ).

Definition 1.3.5 (Sobolev space H!, with t € R). Let Q be a bounded polygonal or
polyhedral region in R, with d = 2,3. Then, the Sobolev space H', witht € R, is defined
by interpolation as shown in [1, Chap. 7]. Thanks to this method, we can define any
Sobolev space H as an intermediate space between two Sobolev spaces HE and H{, with
t and t integer and with t <t < t.

1.3.3 Discontinuous coefficients

We define the matrix function A to be piecewise constant and uniformly positive defi-
nite, i.e.

a<&TA(x)e<a forall ¢cR?with|¢|=1and forall z€Q, (1.3.1)

which is also bounded above and below by real numbers a and @ greater than O.
Similarly, we define a piecewise constant function B in such a way that it is bounded

from above and from below by positive constants b and b for all = € €, i.e.

b<B(z)<b forall xecq. (1.3.2)

1.3.4 Sesquilinear and bilinear forms

We are going to use the following bilinear and sesquilinear forms defined on €2:

(i) For any u and v in H}():

a(u,v) := /QAVu - Vi (1.3.3)

(ii) For any u and v in H1(Q) and for any value of the quasimomentum &, which is

a real vector of dimension 2, we have:

a,(u,v) == /Q (A(V + iR)u) - (V — iR)v; (1.3.4)



(iii) For any u and v in L?(f2) or in L2(f):
(u,v)0B,0 = /(Bu) - U, (1.3.5)
Q

(iv) Let S be a constant greater than 0. For any u and v in H1(2) and for any value

of the quasimomentum K:
ak,s(u,v) = ag(u,v) + S(u,v)o B0 (1.3.6)

The introduction of the positive constant S has been necessary, since the sesquilin-
ear form (1.3.4) may not be coercive for all values of K. Instead, in Chapter 2 we

prove that (1.3.6) is coercive for any S > 0.

1.3.5 Definitions of the problems

In order to simplify the analysis for PCF problems, we consider only square cell crystals,
which implies that for those problems the domain €2 is just a square. The analysis holds
also for crystals with more general cells.

In this work, we are going to analyse the following problems in variational form. In
problem (i) below, we suppose that 2 is a polygonal or polyhedral domain with Dirichlet

boundary conditions, and in problems (ii) and (iii) we suppose that 2 is square:

(i) The general elliptic eigenvalue problems is: seek eigenpairs of the form (Aj,u;) €
R x HL(R), with |lujllopa =1 such that

a(uj,v) = \j(uj,v)opa , forallve HY(Q); (1.3.7)

(ii) The model problem for PCFs is: seek eigenpairs of the form (A\j,uj) € Rx HL(S),
with ||ujlloB,0 =1 such that

an(uj,v) = \j(uj,v)080 , forallve HHRQ). (1.3.8)

(iii) The shifted version (with S > 0) of model problem for PCFs is: seek eigenpairs
of the form ((j,u;) € R x HL(SY), with ||ujllo,o =1 such that

ar,5(uj,v) = G(uj,v)op0 , forallve HE(Q). (1.3.9)

Note that the shift S defines the relation (¢;,u;) = (A\j+S5, u;), which is a one-one

relation between the spectra of problems (ii) and (iii).

In (i), eigenfunctions u; are real valued because the bilinear form a(-,-) is real sym-

metric. In (ii) and (iii), eigenfunctions u; are in general complex valued. In all cases
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eigenvalues (j, A; are real, because a(-,-), ax(-,-) and a,,s(-,-) are sesquilinear forms.

1.4 Photonic Crystal Fibers (PCF's)

Photonic crystals are constructed by assembling portions of periodic media composed
of dielectric materials and they are designed to exhibit interesting properties in the
propagation of electromagnetic waves, such as spectral band gaps. In other words,
monochromatic electromagnetic waves of certain frequencies do not exist in these struc-
tures.

Media with band gaps have many potential applications, for example, in optical com-
munications, filters, lasers, switchers, optical transistors; see [32, 31, 46, 35, 3| for an
introduction to photonic crystals. But, for all these applications, the employment of
materials with band gaps is not enough. It is also necessary to create eigenvalues inside
the gaps in the spectra of the media. The common way to create such eigenvalues is
by introducing a localized defect in the periodic structures of media [25]. The impor-
tance of these eigenvalues is due to the fact that electromagnetic waves, which have
frequencies corresponding to these eigenvalues in the gaps, may remain trapped inside
the defects [23, 25] and they decay exponentially away from the defects.

PCFs are of special interest. Such structures are much easier to fabricate than general
3D photonic crystals, while they still allow for many important applications. Theoret-
ical analysis for PCF's is significantly simpler than for 3D photonic crystals because a
PCF dielectric system has two fundamental types of modes, E polarized (TM mode) and
H polarized (TE mode). In each mode, the PCF problem reduces to a one-component,
wave equation for the E field or H field, respectively, as we shall show in the next

subsection.

1.4.1 The physics

The propagation of light inside dielectric materials, which constitute photonic crystals,

is governed by Maxwell’s equations (in the absence of free charges and currents)

( 10B(x,t)
E(x,t) = — - 2020t
V x E(x,t) PR
V x H(x,t) = EM’
c Ot (1.4.1)
V- -B(x,t) =0,
V- -D(x,t) =0,




where E is the electric field, H is the magnetic field, D and B are the displacement
and magnetic induction fields respectively and c is the speed of light in a vacuum. All
vector fields are functions from R? x R to R3. This system is incomplete without the
constitutive relations that describe how the fields D and B depend on E and H. Here

we assume the linear constitutive relations:

D(x,t) = e(x)E(x, 1),
(1.4.2)
B(X7 t) = /J,(X)H(X, t)a

where € and p are the dielectric and magnetic permeability tensors. Inserting relations
(1.4.2) into (1.4.1) we obtain:

VBl 1) = ) D,
V x H(x, 1) = ie(x)aEé}Z’t), s

V- u(x)H(x,t) =0,

| V-e(x)E(x,t) =0.

In order to understand the behavior of light inside these materials, we have to analyse

each frequency separately. Monochromatic light of frequency w can be modeled by

E(x,t) = e“'E(x),
(1.4.4)
H(x,t) = e“'H(x),

where E and H are the modes of the analysed monochromatic light.
So, substituting (1.4.4) into (1.4.3) we obtain a system of differential equations describ-

ing the propagation of light of frequency w in a photonic crystal:

~ w ~

V X Bx) = — (o H(),

¢ (1.4.5)




The system of equations (1.4.5) is time-independent. Each point in the spectrum of
(1.4.5) corresponds to a frequency of light which is allowed to travel through the crystal.
On the other hand, any point not in the spectrum of (1.4.5) corresponds to a frequency

of light which is not allowed to travel through the crystal.

1.4.2 Periodic media and polarized modes

Photonic crystal fibers (PCFs) are one of the most important applications of photonic
crystals. PCFs are a new type of optic fibers, in which, along the axis in the center of
the fiber, is embedded a photonic crystal (commonly with defect). Figure 1-1 shows
an example of the structure in a section of a PCF. In the structure of a PCF, it is
commonly possible to distinguish between two regions: a portion of periodic structure
- see the right picture in Figure 1-1- surrounding a “defect” and a “defect” in which the
periodicity of the structure is broken - see the center of the left picture in Figure 1-1.
The periodic structures used in PCFs have the particular characteristic that they do
not allow to all light frequencies to travel within it. So PCF's trap beams of light of

characteristic frequencies inside the defect region.

Figure 1-1: An example of micro-structure in the section of a PCF. This picture can
be found at the address: http : //en.wikipedia.org/wiki/Photonic_crystal_fibers

The first task, in order to analyse a PCF, is to determine what light frequencies are
not allowed to travel across the periodic structure. To simplify the analysis we can
take a periodic dielectric medium filling all the real space, instead of considering just
the portion of the periodic structure embedded in the PCF.

We are going to consider only “orthotropic” media or in other words, media with a



periodic structure invariant along one axis. This is because the micro-structure in
PCFs are invariant along the axis of the fiber. So, in the PCF case, we assume that

the tensor € appearing in (1.4.5) is “orthotropic”, i.e. it satisfies

ern €12 0
e=1 €z €2 0 ) (1.4.6)
0 0 £33

with €12 = €21 and where each ¢;; is a function of z,y only and also we assume that
the tensor ¢ is positive definite and invertible for any value of x and y in the domain
of the problem.

Since the structures of orthotropic media are invariant along one axis, that we suppose
to be the z-axis, it is straightforward to conclude that also the modes E and H in (1.4.5)
are invariant along the same axis. For orthotropic media, the system of equations (1.4.5)
becomes

~ W ~
V x E(:U>y) = _?H(xay)7

V x H(z,y) = ZLU&(%?J)E(%#)?
c (1.4.7)

V- I:I(l‘7y) = 07

V-e(z,y)E(x,y) = 0.

where we have assumed that p = 1, since the common choice of materials for PCFs
exhibit values of y very close to the value for air, which fills the holes of the structures.
So, without losing generality we can choose u = 1.

Now, we want to show that the system of equations (1.4.7) splits naturally in 2 disjoint
subproblems: called TE and TM modes.

TM mode
Substituting in (1.4.7) the first equation into the second one we obtain:

~ w? ~
V x (V X E(w,y)) = C—Qe(x,y)E(:r,y) , (1.4.8)

such vectorial equation can be written, denoting the components of E = (E1, Es, E3),

as a system of three equations:

10



2
w
E2y:c - Elyy - Elzz + Esz = ?(511E1 + 612E‘2) )

2

w

E3yz — Fo.y — Fogr + Elmy = 072(821E1 + 622E2) R (149)
w2

Erp: — B30 — E3yy + Eoy, = C7633]53 ;

where the notation subscribe x, ¥y and z means derivatives along the directions of each
axis.
Since the electric field depends only on = and y, we have that all the terms in (1.4.9)

involving differentiation along z are zero:

2
w
Eoyy — Evyy = 07(511E1 +e12E3) ,

2

w
—Eogr + Elxy = g(«EQlEl + 822E2) , (1410)
wQ
L _E3rz _E3yy = 672833E3 .

Now it is straightforward to see that the first two equations of (1.4.10) form a problem

2
w
Esyy — E1yy = C*2(611]51 +e12Es) ,

(1.4.11)
2

w
—Foyy + Eigy = §(€Q1E1 + e kEy)

and the third equation of (1.4.10) forms another problem independent from the first

one
2

w
_E3acx — Egyy = 07633E3 y (1412)

since the third equation involves only the component FE3, which is absent in the first
two equations.

We are going to call (1.4.12) TM mode and, denoting E3 by a complex valued function
U(zx,y), the problem (1.4.12) can be written in the simpler form:

AU = ABU, (1.4.13)

with A = w? / ¢® and with B = e33. It is clear that the electric field of all the solutions
of the TM mode has the form E = (0,0,U). Plugging into (1.4.7) the electric field

11



E = (0,0,U), we obtain that the correspondent magnetic field satisfies

W~

_?H(xjy) = (Uy(l’,y),_Ux(m??/)?O) :

TE mode

To obtain a simple formulation of the TE mode, it is necessary to start again from

(1.4.7) and then substituting the second equation into the first one to obtain

2

V x (e (@, y)V x H(z,y)) = %H(x,y) , (1.4.14)

where 7! is the inverse of ¢ and which is equal to:

) €22  —€12 0
-1
e = e — e | e fn 0
11€22 — €12€21 -
O €11E22—€12€21

€33

The vectorial equation (1.4.14) is a set of three scalar equations in the component of
the magnetic field H = (Hy, Ho, H3). In (1.4.15) below we have reported the third
equation of the system, which involves only the component H3 and it is disjoint from

the other two equations:

(—ElgHgy — 811H31> _ (522H3y + 521H3a:> _ “172}13 (1 4 15)

€11€22 — €12€21 €11€22 — €12€21

Denoting the component Hs of the magnetic field by a complex valued function U (x, y)

we have that (1.4.15) can be written in a simpler form:
V- (AVU) = AU, (1.4.16)

where A = w?/c? and where

1 €11 €12
P .
€11€22 — €12€21 E91 €929

We use (1.4.16) as the definition of the TE mode. So the magnetic field of the solutions
for the TE mode is H = (0,0,U) and plugging into (1.4.7) such magnetic field, we

obtain that the correspondent electric field satisfies

w

—e(@,y) Bl,y) = (Uy(,y), ~Ua(w,9),0) - (1.4.17)
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1.4.3 Floquet transform

The domain of problems (1.4.13) and (1.4.16) is the whole R? filled with a periodic
structure. Moreover, we have from the theory [36] that the spectra of periodic problems
with smooth coefficients are formed by bands of essential spectrum. Unfortunately,
there is not a similar proof for periodic problems with discontinuous coefficients, but
it is widely accepted the conjecture that also the spectra of these problems are formed
by bands of essential spectrum.

The unboundness of the domain and the nature of their spectra, make problems (1.4.13)

and (1.4.16) very difficult to be treated numerically in their stated form.

Figure 1-2: A portion of a possible periodic structure medium.

In order to improve our chances to solve efficiently these problems, we are going to use
the Floquet transform [34, 35], which is a standard tool of analysis for handling PDEs
with periodic coefficients. This transform has been borrowed from crystallography
as well as most of the terminology. So, we define the “primitive cell” € of a periodic
medium to be the smallest portion of the structure of the medium, which if periodically
repeated will recover the structure of the whole medium.

A fundamental concept in the description of any crystal structure is the “lattice”,
which specifies the periodic array in which the repeated primitive cells of the crystal
are arranged. A 2D lattice is defined as the linear span of two vectors vy and vy. For
any 2D lattice that exists a “reciprocal lattice”, which is another 2D lattice generated
by vectors w; and ws such that v; - w; = 27wd;;. We define the “first Brillouin zone”
IC as the primitive cell of the reciprocal lattice. For example, if the periodic cell of a
medium is the unit square, as for the structure in Figure 1-2, the first Brillouin zone
K is the set [, +7]?. In general both the primitive cell and the first Brillouin zone

K are polygonal sets.

13



The Floquet transform is defined for any function g € L?(R?) as

(Fg)(R,x) = e 3" glx — )i, (1.4.18)

nez?

where the “quasimomentum” X € K acts as a parameter. The main effect of the
application of the Floquet transform on an operator with periodic coefficients, is the
decomposition of the operator into the direct integral of a family of operators on the
primitive cell. Each operator in the family is characterized by a different value of the
quasimomentum.

Applying the Floquet transform to problem (1.4.13), and denoting by u = FU, we get
—(V+iR) - (V+ik) u = A Bu,
then, multiplying by a test function v and integrating by parts we have:
/Q(v +iR) u-(V —iR) v = A /Qu Bw, forallve HXQ), (1.4.19)

which is a special case of problem (1.3.8) with A = 1.
Similarly, applying the Floquet transform to problem (1.4.16), and denoting by u =
FU, we get

—(V+ik)- A(V+ik) u = \u,

again, multiplying by a test function v and integrating by parts follows:
/ ANV+iR)u-(V—ik) v = A / uT,, forallve HLXQ), (1.4.20)
Q Q

which is another special case of problem (1.3.8) with this time B = 1.

A consequence of the application of the Floquet transform is that the spectra of the
TE and TM modes have been decomposed into the spectra of the corresponding prob-
lems forming the two families. In order to see that, we can suppose that (A, U) is an
eigenvalue of (1.4.16), then applying the Floquet transform to U we obtain a function
uy, for each value of K. So, for each value of &, if we apply the Floquet transform to
(1.4.16):

F(=V-(AVU))(R,x) = F(AU)(R,x),

we obtain

—(V+iRk)- A(V+ir) FUU)KR,x) = X FU)(R,x),

proving that (A, u,) is an eigenpair of problem (1.4.20). Similarly, we can argue for the
TH case mode.
We will see in Chapter 2 that the spectra of problems (1.4.19) and (1.4.20) are discrete
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for all values of ¥ € K. To regain the spectrum of problem (1.4.5), it is necessary to
take the union of all discrete spectra for all values of K and for both problems (1.4.19)
and (1.4.20).

1.4.4 Defects and trapped mode

At the beginning of this chapter we described how a light wave could be trapped in
the defect of a PCF. So, the topic of this subsection is to explain how it is possible to
compute numerically the frequencies (i.e. the eigenvalues) and the shape of the light

wave (i.e. eigenfunctions) trapped in the defect.

Figure 1-3: An example of supercell composed by five cells per side and with a missing
inclusion in the center as a defect.

We already said that the spectrum of a periodic medium is formed by bands of essential
spectrum. Then, creating a localized defect somewhere in the medium, we will not
change the bands of the essential spectrum [24, Theorem 1], however it would be
possible that eigenvalues may appear in the gaps between the bands [24, Theorem 2].
Since we have perturbed the periodic structure of the medium, it is not anymore so
simple to apply the Floquet transform. In order to retake the possibility to use the same

analysis, that we have used for the pure periodic medium case, we used the “supercell”
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framework discussed in [49], where also the convergence proof of this framework is
presented. In essence, this framework consists of considering a periodic medium with
primitive cell containing the defect of the PCF surrounded by many layers of the
periodic structure - in Figure 1-3 it is shown a supercell with two layers of square
inclusions surrounding the center of the cell, these square inclusions form two layers of
periodic structure. The defect, in this case, is the missing square inclusion in the center
of the cell, which would be necessary to complete the symmetry of the cell. Because in
the supercell framework there is a defect in each primitive cell, the resulting medium is
not any more a compact perturbation of a periodic medium, so the defects create new
bands in the spectrum. However, as proved in [49], enlarging the primitive supercell
by increasing the number of layers of periodic structure, these new bands will shrink to
eigenvalues and we will eventually recover the spectrum of the periodic medium with

just one localized defect.

1.5 The structure of the thesis

This thesis is divided into five chapters. Each chapter, except the introduction, treats
one main issue of our research. The material in each chapter is linked back to all
previous chapters and the layout of the work is constructed in such a way that the
reader moves from the abstract theory behind the problems to the numerical results in
the last chapter.

In Chapter 2, we illustrate the theory behind elliptic eigenvalue problems and we show
how to characterize the spectra of problems (1.3.7), (1.3.8) and (1.3.9). The main
results in this chapter are the a priori upper bounds for the energy norm of the error
for eigenfunctions and for the absolute value of the error for eigenvalues.

In Chapter 3, we introduce the a posteriori error estimator used to drive the mesh
adaptivity. We will introduce an explicit error estimator based on residuals. The main
results of this chapter are the proof of reliability and efficiency of our a posteriori error
estimator for the PCF case.

In Chapter 4, we present the adaptive FEM for which we can prove convergence. This
method embeds two marking schemes: the first one based on the a posteriori error
estimator defined in Chapter 3, and the second one based on a different quantity called
“oscillations”, which is also defined in Chapter 4. We split Chapter 4 into two sections:
one devoted to the general elliptic case and the other devoted to the PCF case.

In Chapter 5, we have collected a number of numerical results computed using our
convergent adaptive scheme. In particular we present a number of results concerning

problems arising from PCF applications such as band gaps and trapped defect modes.
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Chapter 2
A priori analysis

In this chapter we characterize the spectra of the three problems analysed in this work,
namely: the general elliptic eigenvalue problem (1.3.7), the model problem for PCFs
(1.3.8) and its shifted version (1.3.9). We will show that all these problems have some
characteristics in common. Moreover, the spectra of all these problems will be shown
to be discrete and non-negative.

The analysis presented in this chapter, along with all the results, is not new. In fact
it is possible to find similar material in many books. We suggest [6], [51] and [27]. In
particular we like how the argument has been treated in [51]. In [51], only the class of
regular and elliptic eigenvalue problems has been analysed. So here we have extended
the analysis to more general problems.

The structure of this chapter follows. In Section 2.1 we prove the discreteness of all the
spectra of the considered problems. We have collected the results of each problem in a
different subsection. Then, in Section 2.2 we prove a priori convergence estimates for
eigenvalues and eigenfunctions for each problem. Again, for sake of clarity, we assigned
a different subsection to each problem.

Before starting with the analysis, we need to define self-adjoint operators. Let us denote
by L* the adjoint of the operator L, then:

Definition 2.0.1 (Self-adjoint operator). An operator L is self-adjoint if L = L*,

which implies:
1. L is Hermitian,
2. D(L) = D(L"),
where D(L) and D(L*) are the domains of the operator L and of its adjoint.

Self-adjoint operators have the nice characteristic that they have real spectra; moreover,
this property holds for the bigger class of Hermitian operators, as proved in the next

theorem.
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Theorem 2.0.2. The spectrum of a Hermitian operator L is real.

Proof. Since the form a(-,-), which is associated to the operator L, is sesquilinear we
have:
a(u,v) = (Au,v),

and

a(v,u) = (v, \u),

where (A, u) is an eigenpair of L. Choosing v = u we have

Au,u) = a(u,u) = (u, ),

which implies that A is real, i.e. A = A. O

2.1 Characterization of spectra

The purpose of this section is to characterize the spectra of problems (1.3.7), (1.3.8)
and the spectrum of the shifted version of the PCF model problem, problem (1.3.9). We
start by analysing in the first subsection the problem (1.3.7). Since all three problems
are similar in many aspects, we shall modify the framework used for the problem (1.3.7),
to analyse also the remaining two problems. This will be done in the following two

subsections.

2.1.1 Generalized elliptic problem

We start showing at first that the sesquilinear forms a(-,-) and (-, )50 of (1.3.7) are
continuous and that a(-,-) is also coercive. We prove in Theorem 2.1.2 the coercivity
of a(-,-) using the equivalence between the energy norm and the standard norm of the
Sobolev space H{ (). The equivalence between the two norms is proven in the next

lemma.

Lemma 2.1.1. The energy norm related to problem (1.8.7) and the standard norm of
H}(Q) are equivalent:

C’ |lul,o < a(u,u)l/2 < " lullio, forallue H&(Q),

where the constants C' and C" are independent of u.

Proof. Using (1.3.1) and the definition of a(-,-), we conclude that

a(u,w)’? < @? |ulio < @/? |ula, forallue HL(Q). (2.1.1)
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In order to prove the lower bound for the energy norm, which would complete the

proof, we apply the Poincaré inequality
lulio < Cplulig, forallue HY(Q),

where C), is a constant depending on the shape of the domain €2. The application of

the Poincaré inequality leads us to the sought lower bound,
lullio < Cplulia < Cpa™ Y2 a(u,u)/?,  for all u € HL(Q). (2.1.2)

The results (2.1.1) and (2.1.2) complete the proof. O
The coercivity of the sesquilinear form a(-,-) comes, as a corollary of the Lemma 2.1.1.

Theorem 2.1.2. The sesquilinear form a(-,-) is coercive with coercivity constant cq, >
0, i.e.:
a(u,u) > cq ||u||%Q ., for allu € HY(Q). (2.1.3)

Proof. The coercivity is proved just reformulating (2.1.2) as
a(u,u) > cq HUH%,Q , for all u € HA (), (2.1.4)

with constant ¢, = C, 2a, which is always greater than 0. O
Remark 2.1.3. The coercivity of the bilinear form a(-,-) implies that the spectrum is

positive, because for any eigenpair (A, u), with |ullo o =1, we have:

0 < ¢q HUH%B,Q < a(u,u) = )‘(UaU)O,B,Q = A\

Another easy-to-prove property for both the sesquilinear forms a(-,-) and (-, )o,,n is

continuity.

Theorem 2.1.4. The sesquilinear form a(-,-) is continuous in H} () with continuity

constant C, = a:

a(u,v) < Cy |lullia lvllig, for all u,v € HY(RQ). (2.1.5)

Theorem 2.1.5. The sesquilinear form (-,-)os.q is continuous in LE(SY), with conti-

nuity constant C, = 1:
(w,v)os0 < Cyllullosa Wlosea, foraluve LE(Q). (2.1.6)

The first step in order to prove the discreteness of the spectrum of problem (1.3.7)

consists in proving the existence and the uniqueness of the solution for the linear
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problem
a’(uv U) = (faU)O,B,Q s for all v € H&(Q)a

for any f € L%(€2). In order to do so we can use Lax-Milgram theorem (see for details
[9]) which implies the uniqueness of the solution u. We know that the Lax-Milgram
theorem holds in this case, since we have already proved continuity and coercivity for
a(-,-) and since the continuity for the linear functional (f,-)o s.q is straightforward. By
the Lax-Milgram theorem, there is a uniquely defined solution operator, T : L%(Q) —
HE(Q) such that

VfeLp(Q), a(Tf,v) = (f,v)opq, forallve Hy(Q).

The second necessary step to prove the discreteness of the spectrum of (1.3.7) consists
in applying the spectral theorem for compact operators (quoted below as Lemma 2.1.7)

to the solution operator T'. Let’s define what a compact operator is first.

Definition 2.1.6 (Compact operator). An operator L : H1 — Ha on a Hilbert space
Hi is compact if for any bounded sequence {v,,} € Hi of functions, the resulting

sequence {Lvp,} € Ha has a converging subsequence.

Lemma 2.1.7 (Spectral theorem for compact self-adjoint operators). The spectrum
of a compact operator consists of eigenvalues of finite multiplicity with the only possi-
ble accumulation point at zero, and, possibly, the point zero (which may have infinite
multiplicity). Furthermore, eigenfunctions corresponding to distinct eigenvalues are
orthogonal to each other, and it is possible to construct an orthogonal basis of eigen-
functions (for details see [30]).

Now, we are ready to prove in Theorem 2.1.9 the discreteness of the spectrum of (1.3.7).

Lemma 2.1.8. The solution operator T is compact in H}(Q), i.e. T : HY(Q) —

HE(Q) is compact, and its spectrum is discrete.

Proof. The fact that the solution operator T is bounded comes straightforwardly from
the coercivity of a(-,-) and the continuity of (-,-)ogo. In fact for all f € L%(Q) we

have:

ITfllio < it a(Tf,Tf) = ;' (f.Tfose < ¢;'Cy|If

0,82 [ITfll0,50;
which implies that T is a bounded operator for L%(f2) to H(Q), i.e.
ITflie < o'y llfllope, forall fe Li(Q). (2.1.7)

Then we have that T : H}(Q) — H(Q) is compact due to the compactness of
embedding HJ () C L%(2) (for the proof see e.g. [1, Theorem 6.3]).
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To see that the spectrum of T is discrete we need to use the spectral theorem for

compact operators (Lemma 2.1.7). ]

Theorem 2.1.9. The spectrum of problem (1.3.7) is discrete.

Proof. In Lemma 2.1.8 we have proved that T" has discrete spectrum. So, denoting by
(p,u) € Rx H(Q) an eigenpair of T', we have by the definition of the solution operator
that

a(pu,v) = (u,v)opq, forallve H(Q). (2.1.8)

Thanks to the linearity of a(-,-) we have that (2.1.8) is equivalent to
a(u,v) = p~t (u,v)opq, forallve HF(Q), (2.1.9)

which shows that for any eigenpair (u,u) of T', with pu # 0, corresponds an eigenpair
(\,u) of the problem (1.3.7), with A = p~!. This argument holds also in the other
way round, since for any eigenpair (A, u) of the problem (1.3.7), with A # 0, we have
that, by definition of the solution operator, (A™!,u) is an eigenpair of T’

In conclusion the spectrum of (1.3.7) is just a transformation of the spectrum of T,
where the eigenfunctions remain unchanged and the eigenvalues are transformed as just

shown. This prove the discreteness of the spectrum of (1.3.7). O

2.1.2 PCF model problem

In this subsection we are going to show, using the framework of Subsection 2.1.1, that
the spectrum of the PCF model problem (1.3.8) is discrete. The analysis for this
problem is more complicated because the problem may not be coercive. We show in
the next lemma that the sesquilinear form a,(-,-) is only non-negative definite, which

does not imply coercivity.

Lemma 2.1.10. The sesquilinear form a(-,-) of problem (1.3.8) is non-negative def-
inite for any K € K.
Proof. By direct calculation we have that, for any complex function u € HL(2), which

we expand in its real and imaginary parts, i.e. u = u, + % u;:

(V+iR)u - (V—iR)u = [(Vur —Ru;) + i (Vu; + Ruy) |
a b

(2.1.10)
- [(Vur — Rug) — i (Vg + Ruy) |,

a b

where a and b are, by construction, real vector-valued functions. Hence

V+idu - (V—id)u = [a+ib] - [a—ib] = ®+b* > 0,
( Ju - ( ) [
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which implies the non-negativeness of the sesquilinear form a(-,-). O

Remark 2.1.11. Because the sesquilinear form a,(-,-) is Hermitian, we have from
Theorem 2.0.2 that the spectrum of the problem is real. Moreover, Lemma 2.1.10

implies that the spectrum of (1.3.8), for any value of R € K, is non-negative:
0 < ap(u,u) = XMu,u)o B0 = A,

for any eigenpair (A, u), with ||ullo 8,0 = 1.

To make problem (1.3.8) coercive we have to introduce a shift in the spectrum. This
is the reason why we introduced problem (1.3.9), where S is any constant greater than

0. To simplify the notation we denote by
ai,s(u,v) = ag(u,v) + S(u,v)o80- (2.1.11)

Note that trivially any eigenpair (¢, u) of (1.3.9) corresponds to an eigenpair (A, u) of
(1.3.8), with A = ¢ —S. Since the spectrum of (1.3.8) is real and non-negative, we have
that the spectrum of (1.3.9) is real and positive, because S > 0.

In the next theorem we prove that for any value of S > 0, a, 5(-,) is coercive:

Theorem 2.1.12. For any S > 0 and for any value of the quasimomentum & € IC, the

sesquilinear form ay s(-,-) is coercive with coercivity constant cE'G¥ > min{a, Sb}, i.e.
ap,s(u,u) > ch S lulll g,  for allu € HH(Q). (2.1.12)

Proof. We want to prove that the sesquilinear form a, s(-,-) is coercive in the space
HL(Q). Unfortunately, we do not have the Poincaré inequality, since constant functions
lie in the space HL(2). So, applying the definition of the sesquilinear form a, s(-, "),

we have:

ap,s(u,u) = ag(u,u) + S||u|](2)’379 = /.AVU-VE — AVu-iku + Aiku-Vu
Q

Q

= |u]%’A’Q + 2i</§21m(A(E-Vu)u)>

(2.1.13)

+ [ AR)-Fun + S|ulB s
Q

In Lemma 2.1.10 we have already proved that, for any u € H}(€), a.(u,u) is real and

non-negative. In view of this, we can conclude that the imaginary term in (2.1.13)
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vanishes. Then, what remains from (2.1.13) is
onstun) = luffao + [ (AR)-Fui + Slulfsa (2.1.14)
Then, manipulating a bit more (2.1.14), we have

ans(uu) > auflo + a / RPut + SbllullZ
Q

= alulfg + afPlulfo + Sbllulie

> alulfg + Sbllullge .

which implies that a, g(u,u) > caP%FHuH%Q, with canF > min{a, Sb}.

O]

In order to show that the spectrum of (1.3.8) is discrete, it is enough to prove that the
spectrum of (1.3.9) is discrete, because the spectrum of (1.3.9) is a shifted version of the
spectrum of problem (1.3.8). Then, to prove that the spectrum of (1.3.9) is discrete,
we are going to argue similarly as in Subsection 2.1.1. The first step is to prove that

the sesquilinear form of (1.3.9) is continuous.

Theorem 2.1.13. For any value of the quasimomentum K € K, the sesquilinear form

an,s(+,+) is continuous with continuity constant C’EgF, which depends on b, @, S and

on the diameter of K:
PCF 1
ar,s(u,v) < Cy 5 Jullrallvlie, for allu,v e Hi(Q). (2.1.15)

Proof. The proof is straightforward, it is just necessary to use the Cauchy-Swharz

inequality:
ag,s(u,v) < @ (ulrelvle + [& - lulie [v]oe
+ 1R - [ole llulloe + (R +Sba?) [lulloe llvllog )
< @ maxgec{L, R, [&* + S ba~'} (Julloe + [uhg) (Ivlloge + [v]1e)
< Yt lullie l[olle
with ngF = 2a maxgexc{l,|R],|R?+Sba '} O

Corollary 2.1.14. For any value of the quasimomentum K € IC, the sesquilinear form

C(I;CF

ax(-,-) is continuous with continuity constant , which depends on @ and on the
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diameter of K:
an(u,v) < CY¥Flulliqllvlia, for all u,v € HL(Q). (2.1.16)

The next step is to prove that the solution operator T of problem (1.3.9) is compact
in H1(Q). We can define a solution operator TV : [2(Q) — HL(Q) as:

Ve LE(Q), ans(Tf,v) = (f,v)opa, forallve HLQ).

Lemma 2.1.15. The solution operator TXCY is compact and its spectrum is discrete.

Proof. The proof is analogous to the proof of Lemma 2.1.8, since a, s(-,-) is coercive
from Theorem 2.1.12 and the imbedding H}(Q2) C L%(£) is compact. O

Theorem 2.1.16. The spectrum of (1.3.9) is discrete for any ik € K.

Proof. The spectrum of problem (1.3.9) is a transformation of the spectrum of TFCF,

For the details see the proof of Theorem 2.1.9, since the transformation is the same. [

We would like to conclude this section remarking that, because the spectrum of (1.3.9)
is a shifted version of the spectrum of (1.3.8), Theorem 2.1.16 also implies that the

spectrum of (1.3.8) is discrete.

2.2 Convergence estimates

In this section we prove a priori convergence estimates for finite element approximation
of both eigenvalues and eigenfunctions. We shall also introduce the FEM that we are
going to use. We start with problem (1.3.7), then we will adapt the theory to cope
with the PCF model problem in the following sections.

2.2.1 Finite element approximation for general elliptic eigenvalue prob-
lems

Now we introduce the definition of the discrete version of problem (1.3.7). Accordingly,
let 7, ,n = 1,2,... denote a family of conforming triangular (d = 2) or tetrahedral
(d = 3) meshes on 2. Each mesh consists of elements denoted by 7 € 7,,. We assume
that for each n, 7,,1 is a refinement of 7,,. For a typical element 7 of any mesh 7,
its diameter is denoted H, and the diameter of its largest inscribed ball is denoted p,.
Moreover all the meshes are to be considered conforming (the definition can be found
for example in [9]) and we use only shape regular meshes, i.e. there exists a constant

Creg independent of n such that
H; < Creg pr, forall 7eT7T,. (2.2.1)
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We denote with F,, the set of all the edges (faces) of the elements of the mesh 7,,, and
we assume to have already chosen an ordering and a preorientated unit normal vector
n¢ for each f € F,. Furthermore, we denote by 7i(f) and 72(f) the elements sharing
f € F,. Finally we define

H# = m%_X{HT}.

TE

We assume that the meshes 7,, form a sequence {7, },cn, on which the quantity H'®*
goes to 0 when n goes to infinity.

Our problems may have discontinuous coefficients, but we assume that in the interior
of each element 7 of any mesh 7, the values of A and B are constants. To enforce
this requirement we only consider problems with piecewise constant coefficients where
discontinuities are resolved on the coarsest mesh.

On any mesh 7,, we denote by V;, C C°(2) the finite dimensional space, of dimension
N, of linear polynomials on each element 7 of the mesh.

The discrete formulation of problem (1.3.7) is:

seek eigenpairs of the form (A, u,) € R x Vi, with |Juy|loa =1 such that

a(tn,vn) = Ap(tn,vn)opa , forall v, € V. (2.2.2)

For any n, the spectrum of problem (2.2.2) is discrete due to the fact that the space
V,, is finite dimensional.

In order to carry out the analysis in the rest of the section, we assume that the eigen-
functions of the problem (1.3.7) are contained in the Sobolev space H!T#(2) for some

s > 0. We make the following regularity assumption for the elliptic problem (1.3.7):

Assumption 2.2.1. We assume that there exists a constant Cey > 0 and s € [0,1]
with the following property. For f € L*(Q), if v € H}(Q) solves the problem a(v,w) =
(f,w)oq, for allw € HE(Q), then

1v]l14+s,0 < Cenll flloQ - (2.2.3)

Assumption 2.2.1 is satisfied with s = 1 when A is constant (or smooth) and € is
convex. In a range of other practical cases s € (0,1), for example €2 non-convex (see
[39]), or A having a discontinuity across an interior interface (see [5]).

Assumption 2.2.1 is stated for the linear problem a(v,w) = (f,w)oq, so in order to
apply Assumption 2.2.1 to the eigenvalue problem (1.3.7), i.e. a(u;,v) = Aj(u;,v)0,8,0,

we need to substitute the data f with the eigenpair (\;, u;), where ||u;]|

0,80 = 1, and
also it is necessary to take in account the fact that the inner product of (1.3.7) is
weighted by B, so (2.2.3) becomes:

Hujul—&-s,ﬂ < Ceu)\jg.

25



The next preliminary result comes as a standard result from approximation theory:

Lemma 2.2.2. For any function uw € H**(Q) N H}(Q) we have that

inf Ju—valie < Capp(Hy™)[ul14s.0,
vn€Vp

Proof. For a proof see e.g. [48]. O

A consequence of Lemma 2.2.2 is that the space V}, becomes dense in H'(Q) N H} (),
when n goes to infinity due to the assumptions on the sequence {7, },en, i.e.
HY™ Q)N Hy(Q) = lim V. (2.2.4)
n—oo

The next theorem comes from [6] and it is fundamental for the a priori analysis of

elliptic eigenvalue problems.

Theorem 2.2.3. The sequence {7, }nen converges in norm to the solution operator T
when n goes to infinity. This implies that also the spectrum of problem (2.2.2) converges

to the spectrum of the continuous problem (1.3.7) when n goes to infinity.

Remark 2.2.4. From Theorem 2.2.3 we have that for each eigenvalue \; of multiplicity
R+1, it is possible to construct R+1 sequences of computed eigenpairs (Njyrn, Witrn),
with v = 0,..., R, such that A\, converges to \; when n goes to infinity, for all
r=0,...,R. Moreover, for any n all the eigenfunctions uj n, ..., U4,y are orthogonal

to each other.

2.2.2 Convergence estimates for the general elliptic eigenvalue case

In Section 2.1.1, we have already proved that the spectrum of the problem (1.3.7) is
positive and discrete. But we have not yet defined a way to actually determine the
eigenvalues of such problem. Now, it is time turn our attention to this particular aspect.
In Definition 2.2.7 the Rayleigh quotient is introduced and the following theorem uses

this functional to characterize the eigenvalues of problem (1.3.7).

Notation 2.2.5. In this subsection, we write A < B with A, B € R when A/B is
bounded by a constant which may depend on the functions A and B, on ¢, in (2.1.8),
on Cq in (2.1.5), on Cy in (2.1.6), on Creg in (2.2.1), on Cey in Assumption 2.2.1 or
on Capp in Lemma 2.2.2, but not on n. The notation A= B means A S B and A 2 B.

Since we know that the spectrum of (1.3.7) is positive and discrete, we are able to sort

the eigenvalues in increasing order:
D<A <A< A<
Let E; be the eigenspace of problem (1.3.7) corresponding to A;.
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Definition 2.2.6. For the first j eigenvalues, we define the space
El =span{E;:i=1,...,j} .
Moreover, we also define the space
& ={ue& |ullopa=1}.
Definition 2.2.7 (Rayleigh quotient for general elliptic eigenvalue problems). We

define the Rayleigh quotient as

a(v,v)

R(v) = CRDITTS

where v € H} ().

Theorem 2.2.8. Any eigenvalue \j, with j > 1, of problem (1.3.7) can be characterized
in the following way using the Rayleigh quotient (with v # 0):
Ai= min R(v),
T verl(@) ()
llvllo,8,0=1
vlgl™!

where £ is to be interpreted as the empty set (see [51, Chapter 6, page 220] for the
proof ).

An equivalent way to characterize these eigenvalues is using the minimum-maximum
principle explained in [51, Chapter 6, page 221]. If R(v) is maximized over an j-
dimensional subspace V; C H{(Q), then we have:

Aj = min max R(v), (2.2.5)
V;CHg(Q) ~ v€EV;
llvllo,8,0=1

where the minimum is taken over all j-dimensional subspaces of Hg ().
The characterization of the spectrum of (2.2.2) follows. Let Ej,, denote the discrete
eigenspace of problem (2.2.2) corresponding to the eigenvalue \; in view of Remark 2.2.4

and let also
5{;1 = {v espan{FEin,....,Ej_1,} : ||vllozo = 1} ’

where 8?’,1 is to be interpreted as the empty set.

Theorem 2.2.9. Any eigenvalue \;j,, with j < N = dimV,,, of problem (2.2.2) can

27



be characterized in the following way using the Rayleigh quotient (with v #0):

Ainp= min R(v
> vEV, ( )7
llvllo,8,0=1
vlE] !

(see [6, page 699].)

Also for the discrete problem there is an equivalent way to characterize the spectrum
based on the minimum-maximum principle, which is explained in [51, Chapter 6, page

223]. This time the minimum is over all j dimensional subspaces Vj,, contained in V,:

)\jm:%{iﬁcnvﬂ vrg\%i R(v). (2.2.6)
llvllo,8,0=1

Since V,,, for all n, is contained in H&(Q) by construction, we have that, for the same
value j, the minimum (2.2.5) is always smaller than the minimum (2.2.6). So it follows
directly that A\; < A;,, for problem (1.3.7).
In the rest of this section we will primarily consider an eigenvalue \; of problem (1.3.7)
with multiplicity R + 1, where R > 0. So, from the positiveness of the spectrum of
(1.3.7) we have:

O0<N=Ny1=""=N4R:

The remainder of this section is devoted to the proof of convergence of approximate
eigenvalues and eigenfunctions of problem (1.3.7). The main results are in Theo-
rem 2.2.10, where we also illustrate how the convergence depends on H}'**. The
treatment below is an extension of the theory in [51], however, we covered the multiple

eigenvalue case, too.

Theorem 2.2.10. Let s be as given in Assumption 2.2.1 and suppose that H®* is
small enough. Then considering the eigenvalue \;, we have that the following statements
hold:

(1) In view of Remark 2.2.4, let N be an eigenvalue of (1.3.7) and let (N n,ury) be
a computed eigenpair of problem (2.2.2), with A, converging to \; when n goes
to infinity, then

0< N — N S (HPox)2s (2.2.7)

(ii) Let A\; be an eigenvalue of problem (1.3.7) with multiplicity R+ 1, with R > 0 and
let w; be any eigenfunction of A with ||wl|oB,0 = 1, then there exists a sequence

{Win tnen with wy,, € Eyy, for all n and with ||wy |00 =1 such that

’0,3,9 5 Cspecl(HernaX)zs, (228)

|ug — wyp
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auy — Wi, up — wip)Y? S Copeca(HPH)S (2.2.9)

Where the constants Cspect and Cspeca depends on the spectral information \j, uj,
ji=1...,l+R.

The proof of this theorem above is postponed to the end of the section. Let us start

with a lemma that should clarify our strategy to prove Theorem 2.2.10:

Lemma 2.2.11. Let (A, u;) be a true eigenpair of problem (1.3.7) with ||uoB0 = 1
and let (Njn,ujn) be a computed eigenpair of problem (2.2.2) with ||ujnlloso = 1.

Then we have:

a(u — jp, = Ujn) = Nllu—uinlgsa + Ajn — -

Proof. Using the linearity of the bilinear form a(-,-) and using (1.3.7), (2.2.2); we have

a(u; — Ujm,u — Ujn) = N+ N — 2N(ug, ujn)oB.0- (2.2.10)

Furthermore, by analogous arguments we obtain
lwr = wjnlipo = 2 — 2(w,ujn)os0: (2.2.11)

Substituting (2.2.11) into (2.2.10) we obtain the sought result. O

Corollary 2.2.12. Let (\;,u;) be a true eigenpair of problem (1.3.7) with ||u|losa =1
and let (Njn,ujn) be a computed eigenpair of problem (2.2.2) with ||u;n,

‘07379 =1. Then
we have:

)\j,n — /\l S a(ul — uj,n,ul — Uj7n) .

Proof. The proof is straightforward from Lemma 2.2.11 since the quantity A;|w; —
Uj7nH(2)7B7Q is always greater than 0. O

In the proof of Theorem 2.2.10 below we first prove (2.2.7), and then (2.2.8). Afterward,
thanks to Lemma 2.2.11, (2.2.9) follows easily.

Now we start to prove (2.2.7). In the next definition we introduce the projection
operator (), which for a given u € H&(Q), it returns the best approximation in the

energy norm of u in the finite space V,.

Definition 2.2.13 (Rayleigh-Ritz projection operator for general elliptic problems).
We define the projection operator Q, : H&(Q) — V), as the operator that, for any
given function u € H}(SY), it returns the function Qnu € V,, which satisfies:

a(u,vy) = a(Qnu,vy), for all v, € V.
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From the definition of Q) it is straightforward to see the orthogonality of the projection,
i.€.
a(u — Quu,v,) = 0, for all v, € V.

In other words, if w is the solution to the problem —Au = f, Q,u would be exactly its

Ritz approximation u,. This guarantees that:

lu = QuullLe S (Hy™)*lullisa (2.2.12)

which comes from Lemma 2.2.2 and Céa’s lemma. See [27, Theorem 8.4.14].

In the next lemma, we prove an upper bound for the computed eigenvalues using the
true ones. This result, together with the fact that computed eigenvalues are always
greater than the true ones, thanks to the minimum-maximum principle, is the pivot to
prove (2.2.7).

Lemma 2.2.14. Let us define the quantity o}’ p as

ol g = mﬁfR 2(u,u — Quu)opo — (u— Qnru,u— Qnu)oBal- (2.2.13)
uesq
Provided that H,™* is small enough such that o}’ p <1, then the computed eigenvalue
Ain, with | < N where N = dim V,,, is bounded above and below by:

Al

NS Ny £
L—oir

(2.2.14)

Remark 2.2.15. The quantity o}’ p has a geometrical interpretation:
2(u,u — Quu)oga — (u—Quu,u— Quulosa = (u+ Quu,u— Quu)oso

= (w,u)opn — (Qnu, Quu)osa -

As can be seen, the quantity o] p is related to the difference between the norm of true
etgenfunction and the norm of the projection of the eigenfunction on the finite element

space.

Proof. Since ||u — Quulloso — 0 as H™ — 0, so 0}, p < 1 when H* is small
enough.

Now, we can turn our attention to (2.2.14). From the minimum-maximum principle
(2.2.6), we have for the space S{JFR, which is defined in Definition 2.2.6, that

)\l,n < max R(Un): max a(Q'flu7 Qnu)

, 2.2.15
vnEQn€i+R uEEﬁR (Qnua Qnu)O,B,Q ( )
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where v, = Qnu. The numerator of (2.2.15) is bounded from above by:

a(Qnu, Qpu) < a(u,u), (2.2.16)

since @), by definition is a projection in the energy norm. Furthermore for any u € E{JFR ,

the denominator of (2.2.15) is bounded from below by

(Qnu, Qnu)opo = —(u—Qunu,Qnu)osa + (u,Qnu)s.0
= (u—Qnu,u—Quu)opa — (u—Qnu,u)osa + (u,Qnu)os0

= (u,u)op0 — 2(u,u—Qnru)osn

(2.2.17)
+ (u - Qnu7 u — Qnu)O,B,Q > 1- O'Z:_R .
To conclude the proof, we substitute (2.2.16) and (2.2.17) into (2.2.15):
A
Ain < max a(u,:) = ln )
uee PR 1 —of p l—ofip
O

The last result that we need in order to prove Theorem 2.2.10(i) is the next lemma.

Lemma 2.2.16. Let u be a function in S{H?’, then the following equality holds

I+R
(u,u — Qru)o o = Z ci)\;la(ui — Qnui,u — Quu). (2.2.18)
i=1
Proof. By definition u = ll+R ¢i u;, where u; are eigenfunctions of (1.3.7) and ¢; are

real values. Applying the decomposition for u yields:

+R

(u,u— Qnu)opa = Z ¢ (Ui, u — Qnu)o B0 (2.2.19)
i=1

Since all u; are true eigenfunctions with corresponding eigenvalue A;, we have:
(ui,u— Quu)osa = A;la(ui, u— Qpu). (2.2.20)
Furthermore, from the orthogonality of the projection operator ¢),, we have:

a(Qnuiyu — Quu) = 0. (2.2.21)
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Now, subtracting (2.2.21) from (2.2.20) we have
(uj,u — Quu)opa = )\;la(ui — Qnui,u— Qpu) fori=1,....,l+R. (2.2.22)

To complete the proof, we substitute (2.2.22) into (2.2.19). O
Now we return to the proof of part (i) of Theorem 2.2.10.

Proof of Theorem 2.2.10(i). From (2.2.14) we have that if HM* is small enough so
that o', p < 1/2, then:
Al n
M < —o <N (14207 ). (2.2.23)
7 L—ofip

So, the only missing piece, in order to prove (2.2.7), is an estimate for o7,  in terms
of Hy™*. We are going to estimate the two terms in 07!,  separately. The first term
can be estimated using Lemma 2.2.16 for any function u = ZIJR c;u; in SﬁR and also
using (2.1.5):

+R

2|(u,u — Quu)osa| = 2’ Z cidy b alu; — Quui,u — Qnu)‘
=1

I+R
s o= e e T - Quyull, o
=1 ’
Then, applying (2.2.12), we obtain:
I+R
X\ 2 —1
A= Quidosal 5 9 | enttul, Wlg @220
1=

To treat the second term of o7 p, we can use the usual Aubin-Nitsche duality argument.

Let us denote e, := u— Qpu and let us define ¢ to be the solution of the linear problem
a(v,p) = (v,en)opa forall wve HH(Q). (2.2.25)
We have from the orthogonality of @, i.e. a(ey,v,) =0 for all v, € V,,, that:
Hen||(2)7379 =alen, ) = alen,p —vy) forall v, €V, .

Then applying Cauchy-Schwarz we obtain

||en||37379 S e —vnlia lenlio, forall v, € V. (2.2.26)
Using Lemma 2.2.2 (together with Assumption 2.2.1) in (2.2.26) we get
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(™) elits.alenl1a
(Hy ™) lenllo,s.alenlr,o- (2.2.27)

lenllso <
S

The last step of the argument consists of dividing both sides of (2.2.27) by |lex|l0,58.0
and applying the regularity result (2.2.12)
lenlloso S (H™)* |uli4s0- (2.2.28)
So, applying (2.2.28) to the second term of o7}  we obtain:
(u— Quu,u — Quulosa S (HP™)¥ulf,, o (2.2.29)

Now, substituting (2.2.24) and (2.2.29) into (2.2.23), we have:

I+R
A < A 20 (H'™) 25 max HZC)\ U; max
n S A F20 ( o AX ; [ SHRH H1+s,§z
Z‘C |2 1 =1

+ (Hy)* s Jult o Q>
S

Yields:
A SN+ N (HP™)?.

~

In order to prove (2.2.8), we use the following argument:

(2.2.30)

Juj —wjnllosa < lluj — Biwjnlosa + 18 — 1)

for any scalar §; and where w; , € Ej ,,. Then we make the choice §; = (Qnuj, wjn)o,B8,0-
The proof of (2.2.8) consists of proving the convergence of the two terms on the right
hand side of (2.2.30). The first term is treated in Lemma 2.2.18 and in Lemma 2.2.19.
We need both lemmas because the analysis is different for either simple or multiple
eigenvalues. After those lemmas we give the proof of Theorem 2.2.10(ii) where we

treat the second term. First we prove a preliminary lemma.

Lemma 2.2.17. Let (A, w;) be a true eigenpair of problem (1.3.7) and let (A, ujn)

be a computed eigenpair. Then we have:

(Njn — ) (Qnug, ujn)osa = N(w — Qnui, Ujn)o,B,0- (2.2.31)
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Proof. By Definition 2.2.13 of @,, we have

a(Qnup,ujn) = alug,ujy), (2.2.32)

Since uj,, and u; are eigenfunctions with corresponding eigenvalues \; , and A;, (2.2.32)

yields to
Ajn(Quug, ujn)osa = (Ui, Ujn)oB.0, (2.2.33)

which is equivalent to (2.2.31). O

Lemma 2.2.18 (For simple eigenvalues). Let s be as given in Assumption 2.2.1 and let
A be an eigenvalue of (1.3.7) with multiplicity R+1 =1, i.e. \; is a simple eigenvalue.
In view of Remark 2.2.4, let (A\jn,ui ) be the computed eigenpair, whose eigenvalue
converges to \;. Moreover, let u; be any eigenfunction of A\ with ||uljos,o = 1. Then,

there exists a function wy, € Ejp,, with ||wyy

lo.8.0 =1 such that:

Hul - ﬁlwl,nHO,B,Q S Cspecl(HqI»LnaX)zs , (2234)

where B = (Qnuy, Win)o0,8,0-

Proof. Let {w1 5, w2, ..., wnNy} be a orthonormal basis in the L% norm for the space
V, constituted by eigenfunctions of the discrete problem and containing wy,, € Ej,.

For w; € E; we have
N

Qnur = Y _(Qntt, Win)o,B.0 Win- (2.2.35)

i=1
Since we have supposed that A; is a simple eigenvalue, we define p; as
Al
= ax ——— s 2236
P ( )
)
where N is the dimension of V,,. The quantity p; is well defined for H}'** small enough

(by Theorem 2.2.10(i) which we already proved). In order to prove (2.2.34) we can use
the triangle inequality:

|lu — Brwinllosa < llw—Quullosa + [|@nuw — Biwinlose- (2.2.37)
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Then, we estimate the second term on the right hand side of (2.2.37) by:

1Qnu — Brwinlli o = 1Qnu — (Quur, win)oB0 Win

‘2
0,B,Q2

N

= Z(Qnula wi,n)O,B,Q Win — (Qnula wl,n)O,B,Q Wi,n
=1

0,B,82
N

= | D (Quui, win)ose win

0,B8,Q

N
= Z(Qn% Win)§ 5.0llwinlld 5.0 (2.2.38)

~

#

~
o~

Applying Lemma 2.2.17 to (2.2.38), for each ¢, and using (2.2.36), we obtain

N 2
Al
Qnur — Brwin ‘%73,9 = <)\>\l> (w — Quu, wi,N)%,B,Q

i—1 \'bn T
i#l

IN

N

2 2
Z pi (W — Quuy, win)j g.o
i=1
i#l

< pillu— Quulld pa - (2.2.39)

where in the last step we used the fact that all w;, are normalized in L%g. So from
(2.2.37), (2.2.39) and (2.2.29), we have that

lw — Brwinlose < llu—Quulosa + |Qnu — Biwinloso

IN

1+ pr) |l — Quuillo,Bo

S L+ p) (HP)2 w140

O

Lemma 2.2.19 (For multiple eigenvalues). Let s be as given in Assumption 2.2.1 and
let \; be an eigenvalue of (1.3.7) with multiplicity R+ 1, with R+ 1 > 1. In view of
Remark 2.2.4, let (Nitin, Wtin), with 0 < i < R, be the R+ 1 computed eigenpairs,

whose eigenvalues converge to A\;. Moreover, let u; be any eigenfunction of \; with
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lwllose = 1. Then defining B; = (Qnui, witin)o,B,0, for 0 < i < R, then we have
R ~
up — Z ﬁiulJri,n ,-S C'specl (Hglax>25- (2240)
i=0 0,B8,Q
Proof. Let {u1pn,u2n,...,uny} be an orthonormal basis with respect to (-,-)osq for

the space V), constituted by eigenfunctions of the discrete problem. For w; € E; we

have
N

Qnup = Z(Qnuhui,n)O,B,Q Ui - (2.2.41)

i=1

Since we have supposed that A; is a multiple eigenvalue, we define p; as

Al
= _— 2.2.42
iU, LR

where N = dim(V},). In order to prove (2.2.40) we can use the triangle inequality:

R R
u — Z Bitli1imn < w — Quuwilloso + ‘an — Z Bitt4im . (2.2.43)
i=0 0,8,9 =0 0,8,
Then we estimate the second term on the right hand side of (2.2.43) by:
R 2 N
HQnuz - Zﬁiul+i,n = Z(Qnula Uin)0,B,Q Win
i=0 0,8, i=1
R 2
— > (Qnur Uitin)0B.0 Ukin
1=0 0,B8,Q
N 2
= H Z (Qnula ui,n)O,B,Q Uj.n
—
i#l IR 0,88
N
2
— Z (Qnj, uin)§ 5.o- (2.2.44)
i=1
i#l,. +R

Then, applying Lemma 2.2.17 to (2.2.44), for each 4, and using (2.2.42), we obtain

R 2 N
HQnul - Z ﬁiul—&-i,n < )012 Z (ul — Qnuy, uz’,n)(Q),&Q
i=0 0,8, i=1,i#l,... |+ R
< pillu = Quull§ g0 (2.2.45)
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So from (2.2.43), (2.2.45) and (2.2.29), we have that

< |w — Quuillo,,0 +

R
up = Bitiyin
i=0

R
Quur — Y Bittyin
i=0

0,B,Q 0,8,Q2

< (1+ po)llug — Quutllo,s.0

< 1+ o) (HP™)*Juliys

Finally we prove part (ii) of Theorem 2.2.10.

Proof of Theorem 2.2.10(ii). Let us consider (ii) for simple eigenvalues at first. Since
we are supposing that \; is simple, we have that Ej, = span{u;,}, where u;,, is a
computed eigenvalue. So, in this case the only two possibilities for w;, are plus or
minus u;,. Let choose w;, in such a way that 5 = (Qnu, wipn)o,8,0 > 0.

Since, we have already proved that the first term of (2.2.30) is O(HJ®¥)25 - see
Lemma 2.2.18. What remains is to prove that also the second term on the right hand
side of (2.2.30) is converging with O(H™#¥)25. To do this we write

0.5.9]
(2.2.46)

16— 1] |winllose = |8 —1) lwwllosel = |Bllwinlosae — lw

= |IBwinllose = lulosel < 8wy —wlose-

Putting (2.2.46) into (2.2.30) and using Lemma 2.2.18 we have

lu — winllose < 2lu —Bwinllose S Cspeer (HY)?.

To prove the statement (2.2.9) we start from Lemma 2.2.11 and using (2.2.8) together
with (2.2.7) we have

a(up — Wi, up — win) = Nillug — win g 5o + [Ain — Al

g )\l 02 (Hrrlnax)4s 4 (HanaX)QS.

specl

The proof for multiple eigenvalues is a bit more complicated:

We chose ro-
. Zizo 5@ Ul+in

150 Bi i

where §; = (Qnur, Witin)oBo. We also set §) = (Qnu, win)o80. Again we choose the

Wi,n )
l0.8,0
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sign of w; ,, in such a way that 8; > 0. It comes straightforwardly that

R
Biwin =Y Bi tiyin -
=0
In view of (2.2.8), we can use the triangular inequality:

lw —winllose < llw—08 winlose
(2.2.47)

+181 win — winllo,B,0,

where the first term on the right hand side has already been analysed in Lemma 2.2.19.
So the proof of statement (2.2.8) would be complete if we found an upper bound for
|81 win — winllo,0. This could be done in the same way as for the case of simple
eigenvalue.

The statement (2.2.9) for multiple eigenvalues can be proved in a similar way as in the
case for simple eigenvalues. From Lemma 2.2.11 and using (2.2.8) together with (2.2.7)

we have

alu — wip, u — win) < Nllw — win g0 + max A — A

S; )\l 02 (H;naxyls + (H;lnax)Qs.

specl

2.2.3 Finite element approximation for PCF model problems

Now we introduce the definition of the discrete versions of problems (1.3.8) and (1.3.9).
Since the FEMs for these problems are very similar to the FEM for generic elliptic
eigenvalue problems, we are going to discuss only the differences between these methods.
Again, let 7, ,n = 1,2, ... denote a family of conforming and periodic triangular meshes
on {2 where 2 is a square.

On any mesh 7, we denote by V;, C C°Q) the finite dimensional space of linear
polynomials on each element 7 of the mesh, let the dimension of this space be N.
For problem (1.3.8) the space V,, C H(Q2), since the problem has periodic boundary
conditions.

The discrete formulation of problem (1.3.8) is:

seek eigenpairs of the form (N, uipn) € R x V,,, with ||uinllosa =1 such that
(Wi, Vn) = Nin(Uin,vn)oBa , forallwv, €V,. (2.2.48)

Furthermore, the discrete formulation of problem (1.3.9) is:
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seek eigenpairs of the form (Cin,uin) € R X Vy, with ||u;nl|losa =1 such that

e, S (Ui n, Un) = Cin(Uin,Un)opa , forall v, eV, (2.2.49)

Assumption 2.2.20. We assume that there exists a constant C'glCF > 0 and s €

[0,1] with the following property. For f € L*(), if v € HX(Y) solves the problem
ars(v,w) = (f,w)oq for allw € HX(Q), then

lolliese < Car Il

0.0 - (2.2.50)

The result above comes from the standard theory used in Assumption 2.2.1. In fact, for
any couple of f and v satisfying the shifted problem with periodic boundary conditions,
we have that the same couple of functions satisfy the problem a, s(v,w) = (f,w)o 0
with Dirichlet boundary conditions matching the function v on the border of the domain
Q2. Under Assumption 2.2.20 it follows that for any eigenpair (A;, u;) with ||u;ljo 50 =1
of the problem (1.3.9), i.e. a. s(uj,v) = Aj(uj,v)o 8,0, we have that inequality (2.2.50)
becomes ||u;]/1+s.0 < CHCFA;b, where we have substituted f with \ju;B.

Also for PCF problems, we have a result similar to Lemma 2.2.2:

Lemma 2.2.21. Let the finite dimensional space V;, be constructed on a mesh T, with
mesh size H®®. For any function u € H'™5(Q) N HL(Q) we have that
CPCF

Jnf fu=vallie < CHT(HI™) ulian

Proof. The proof is based on the material in [48], which is easy to extend to the
periodic case, since the definition of the Scott-Zhang quasi-interpolation operator I, :
H(Q) — V, is elementwise. So we can keep the same definition on each element,
but, since our problem has periodic boundary conditions, summing the contribution
from all elements we end up with the definition I,, : H(Q) — V. Moreover, in [48]
it is proved the following result for any element 7 in a shape-regular mesh:

lv = Inullir < Chillullitse. (2.2.51)

where w, is the union of all the elements which are neighbours of 7 and where the
constant C' is not depending on the size of the element 7. Summing (2.2.51) on all the

elements in the mesh 7,, we obtain:

lu—Luullfo = Y lu—lwulf, < C* ) h¥lullfyse, < C'CHP)P|uliig0
TEVn TGVn

where the constant C’ depends on the overlapping of the patches w,. We conclude the

CPCF

aop = C' 1/2C and taking the infimum over all the functions in V,,

proof denoting by
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i.e.

inf fu—vallio < Ju—Lulia < CRSFHEul a0

Un n

O

A consequence of Lemma 2.2.21 is that the space V}, becomes dense in H'**(Q)NH(Q),
when n goes to infinity due to the assumptions on the sequence {7, }en, i.e.

HY(Q)n HY(Q) = Tim V,. (2.2.52)

n—oo

2.2.4 Convergence estimates for the PCF case

In this section we apply the framework in Section 2.2.2 to PCF problems (1.3.8) and
(1.3.9). For these problems we have already proved the discreteness and non-negativity
of the spectrum in Section 2.1.2.

The framework in Section 2.2.2 can be easily adapted for problem (1.3.9), since this
problem is coercive. In view of this, we are able to state for (1.3.9) results analogous to
Theorem 2.2.10. Then, the convergence estimates for problem (1.3.8) will come at once
from the relation between the spectra of the two problems, which has been analysed in
Section 2.1.2.

Notation 2.2.22. In this subsection, we write A < B when A/B is bounded by a
constant which may depend on the functions A and B, on caP’%F in (2.1.12), on ngF m
(2.1.15), on Cy in (2.1.6), on Cyeg in (2.2.1), on CLCY | or on CEP%F in Lemma 2.2.21,

but not on n. The notation A= B means A < B and A 2 B.

Remark 2.2.23. Similarly to what we have already done for general elliptic eigenvalue
problems, we have from Theorem 2.2.3 that the sequence {Tp,}nen converges in norm
to the solution operator T when n goes to infinity. This implies that also the spectrum
of problem (2.2.49) converges to the spectrum of the continuous problem (1.3.9) when

n goes to infinity. So, for each eigenvalue (; of multiplicity R + 1, it is possible to

construct R + 1 sequences of computed eigenpairs ((rn, Uitrn), with v = 0,..., R,
such that (qr, converges to (; when n goes to infinity, for allr =0,..., R. Moreover,
for any n all the eigenfunctions wuy,, ..., U1, are orthogonal to each other.

From now on we will consider an eigenvalue (; of problem (1.3.9) with multiplicity R+1,
where R > 0. Moreover, let Ellf nCF be the computed eigenspace corresponding to the
true eigenvalue (; in view of Remark 2.2.23. The application of the general framework

to the PCF problem leads us to the following result..

Theorem 2.2.24. Let s be as given in Assumption 2.2.20 and suppose that H'** is
small enough. Then considering the eigenvalue \;, we have that the following statements
hold:
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(i) In view of Remark 2.2.23, let (; be an eigenvalue of (1.3.9) and let ((pn,u1n) be
a computed eigenpair of problem (2.2.49), with ¢, converging to ¢; when n goes
to infinity, then

0< Gm— G S (HP™) . (2.2.53)

(ii) Let (; be an eigenvalue of problem (1.3.9) with multiplicity R+ 1, with R > 0 and
let w; be any eigenfunction of ¢ with ||w|lo g = 1, then there exists a sequence

{wi 5 tnen with wy,, € EIPSF for all n and with ||wy 08,0 =1 such that

lwg — winllope S Cheer (™) (2.2.54)
.5 (U — Wiy g — W) 2 < Cool (Hy™)* . (2.2.55)

Where the constants C;CecFl and C’Sl;%g depends on the spectral information (;, u;, © =
1,...,L.

The structure of the proof of Theorem 2.2.24 is very similar to the proof of Theo-
rem 2.2.10. So we are not going to rewrite it. Instead we state some of the intermedi-
ate results used to prove the theorem. We start defining the Rayleigh-Ritz projection

operator for this problem.

Definition 2.2.25 (Rayleigh-Ritz projection operator for the PCF case). We define
the projection operator QECF : HX(Q) — V}, as the operator that for a given function
u € HY(Q) returns the function QECFu € V,:

a,s(u— QECFu,vn) =0 forallv, €V,.

To prove the estimates for eigenfunctions we have to adapt Lemma 2.2.11 and Lemma 2.2.18
to this problem. To modifications are very simple since we need just to change the

sesquilinear form.

Lemma 2.2.26. Let ((;,u;) be a true eigenpair of problem (1.3.9) with ||w||o,50 = Lland
let (Cjmyujn) be a computed eigenpair of problem (2.2.49) with ||ujn|lo80 = 1. Then

we have:

e, (U — Wi, W — Win) = Gl — winll§ .o + [Gim — G-

Corollary 2.2.27. Let ((;,u;) be a true eigenpair of problem (1.3.9) and let ((jn,wjn)
be a computed eigenpair of problem (2.2.49). Then we have:

G — Gl < aws(w — wjn, up — ujn) -
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Lemma 2.2.28. Let define the quantity o', p as

ofig = max |(u,u-Qy T uoso + (u-Qy T uuose — (u-Qy " u,u-Qr M u)osal-
uel;

(2.2.56)
Provided that Hp,** is small enough so that o}’ p < 1, then the computed eigenvalue
Cin, with | < N where N = dimV,,, is bounded above and below by:

Q

—_—
l—olip

G < Qn < (2.2.57)
Lemma 2.2.29 (For simple eigenvalues). Let s be as given in Assumption 2.2.20 and let
¢ be an eigenvalue of (1.3.9) with multiplicity R+1 =1, i.e. {; is a simple eigenvalue.
In view of Remark 2.2.23, let ({1 n,uin) be the computed eigenpair, whose eigenvalue
converges to (. Moreover, let u; be any eigenfunction of ¢ with ||wljoso = 1. Then,
there exists a function wy, € E}TSF, with w080 =1 such that:

lw — Brwinllo.so S Cheey ()% (2.2.58)

where B = (QYFuy,wi )0 8.0
Lemma 2.2.29 needs some modification to be suitable for multiple eigenvalues.

Lemma 2.2.30 (For multiple eigenvalues). Let (; be an eigenvalue of (1.3.9) with
multiplicity R + 1, with R+ 1 > 1. In view of Remark 2.2.23, let ((4in,Witin)s
with 0 < ¢ < R, be the R+ 1 computed eigenpairs, whose eigenvalues converge to (.
Moreover, let u; be any eigenfunction of ;. Then defining BZ = (QECFul,ul_s_i,n)oﬁyg,
for 0 <1i < R, then we have
R
u =Y Bitirin < CECE (Hpax)2s, (2.2.59)
1=0 0,8,

We conclude this chapter stating the converging estimates for both eigenvalues and
eigenvectors for problem (1.3.8). These results comes easily from Theorem 2.2.24 un-

doing the effect of the shift on the spectrum.

Lemma 2.2.31. Let (A, ;) be a true eigenpair of problem (1.3.8) with ||wllos0 =

Land let (Njn,ujn) be a computed eigenpair of problem (2.2.48) with ||u;nllos0 = 1.

Then we have:

(U = i, w1 = ujn) = Nllur = winll§ g + A — Al

Corollary 2.2.32. Let (A, ;) be a true eigenpair of problem (1.3.8) and let (Ajn,ujn)
be a computed eigenpair of problem (2.2.48). Then we have:
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Njim — M| < aw(w — wjp, u — ujp) -

Theorem 2.2.33. Let s be as given in Assumption 2.2.20 and suppose that H'** is
small enough. Then considering the eigenvalue N; of problem (1.3.8) with multiplicity
R+ 1 >0, we have that the following statements hold:

(i) In view of Remark 2.2.23, let \; be an eigenvalue of (1.3.8) and let (N n,uirn) be
a computed eigenpair of problem (2.2.48), with N, converging to A\; when n goes
to infinity, then

N < N SN+ (HP)?S (2.2.60)

(ii) Let A\; be an eigenvalue of problem (1.3.8) with multiplicity R+ 1, with R > 0 and
let w; be any eigenfunction of N; with ||u||o,s0 = 1, then there exists a sequence

{wjnnen with w;, € E]PSF for all n and with ||w;nllosa =1 such that

lur = winlloso S Cheer (HR™)> (2.2.61)
(U — Wy, g — wm)l/2 < C’ggg(H,Tax)s . (2.2.62)

Where the constants 05325 and C’g;gg depends on the spectral information \;, u;, 1 =
1,...,1.
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Chapter 3
A posteriori error estimator

In the last decades, a posteriori error estimates have become essential tools in engineer-
ing and physics to improve accuracy of numerical solutions. A comprehensive survey
on the topic is in [52]. However, an a posteriori error estimate for eigenvalue prob-
lems is still quite a new piece of technology. There are only a few works on the topic:
[37, 53, 21, 52, 28, 12]. The approach presented in [52] and [28] is different because in
these works eigenvalue problems are treated as particular cases of general non linear
problems. As far as we are aware there is no a posteriori error estimate used together
with mesh adaptivity for photonic crystal eigenvalue problems.

The a posteriori error estimator we present is based on residuals (defined in Section 3.2).
Its most important characteristics are reliability and efficiency: the first ensures that
the actual error is always smaller than the residual multiplied by a constant (ignoring
higher order terms). The latter ensures that the residual is proportional to the actual
error (plus higher order terms). We will state all the result for linear elements, but
the same analysis holds also for any higher order. Since the presence of higher order
terms in such results, we will refer to them as asymptotic reliability and asymptotic
efficiency.

In Section 3.1 we prove some preliminary results - Theorem 3.1.4, Theorem 3.1.7 and
Theorem 3.1.8 - which will be useful in order to prove reliability and efficiency for our
a posteriori error estimator. In Theorem 3.1.4, Theorem 3.1.7 and Theorem 3.1.8 we
rework the a priori convergence estimates of Theorem 2.2.10(ii), Theorem 2.2.24(ii)
and Theorem 2.2.33(ii) in Chapter 2. Such results in Chapter 2 estimate in different
norms the quantity w; —wy ,, where v; is a true eigenfunction and where wy , is a linear
combination of computed eigenfunctions. So, this quantity describes how well a true
eigenfunction is approximated by the computed ones. But, for the a posteriori analysis,
especially in the context of adaptive methods, it would be more useful to estimate how
good a computed eigenfunction u;, is an approximation of a true eigenfunction U;.
In particular, U; is the true eigenfunction with minimum distance from v;, in the L%

norm and, since u;,, depends on n, consequently also U; depends on n. The quantities
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u; — wy, and U; — uy,, are not equivalent from a practical point of view, because u;,,
is an eigenfunction of the discrete problem and it is a known quantity coming out
from the computations, instead w;,, in general is not an eigenfunction of the discrete
problem and moreover it is unknown, because without knowing w;, it is not possible to
construct the linear combination to obtain wj,. So, in Theorem 3.1.4, Theorem 3.1.7
and Theorem 3.1.8 we estimate the quantity U; — v, both in the L% norm and in the
energy norm.

The outline of this chapter is as follows: in Section 3.1 we prove Theorem 3.1.4 and
Theorem 3.1.7, then in Section 3.2 we define residuals. Further, in Section 3.3 we
give the proof of asymptotic reliability for the PCF case and in the following section,
Section 3.4, we adapt the reliability results to the TE and TM mode problems and to
the general elliptic eigenvalue problem (1.3.7). Then, Section 3.5 contains the proof of

asymptotic efficiency of our a posteriori error estimator for the PCF case.

Notation 3.0.34. In this chapter, we write A S B when A/B is bounded by a constant
which may depend on the functions A and B, on cq in (2.1.3), on canF in (2.1.12), on
Cy in (2.1.5), on CYF in (2.1.16), on C’igF in (2.1.15), on Cy in (2.1.6), on Creg in
(2.2.1) and on the multiplicity R of eigenvalues, but not on the mesh parameters.
The notation A= B means A < B and A 2 B.

3.1 Further a priori convergence results

This section is split into two subsections one devoted to the general elliptic case and

the other to the PCF case. The subdivision has been done for sake of clarity.

3.1.1 The general elliptic case

Let us use the same notation as in Chapter 2: \; is an eigenvalue of multiplicity R + 1
and E; and £}, are the true and computed eigenspaces corresponding to A;, in the sense
of Remark 2.2.4. We denote by {ul+r}§:0 a orthonormal basis for E; with respect to the
inner product (-, -)o o and from Theorem 2.2.10(ii) we have that for each r =0,..., R
there is a sequence {wj4y p }nen, With wiy,,, € Ej,, that converges to u;y, in both the
L? and the energy norms.

We can define the R+ 1 x R + 1 matrix ¥,, whose entries are

R
[\I]TJT‘J = (Qnul—i-rvul-‘ri,n)(),B,Q/H Z(Qnul+r7ul+m,n)0,8,ﬂ ul—&-m,nHO BQ (311)

m=0 ’7

where the projection operator @, is defined in Definition 2.2.13. We would like to
show that the definition of ¥, is well posed for H,'** small enough, since in such case

the quantities H Zi:o(QnuHrv Uitm,n)0,8,0Q Ultmn are different from 0 for all 7.

sl
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Looking for a contradiction, we suppose that exists an r such that for any value H**

in a subsequence of H** we have that

= 0. 3.1.2
0,8,Q ( )

H Z (Qn/ulJrr; ul+m,n’)0,B,Q Ul+m,n’
m=

Since the set of vectors {uj1, »/} is an orthonormal basis for Ej,/, we have that (3.1.2)
is equivalent to

Vm, (Qn’ul+r;ul+m,n’)O,B,Q = 0. (313)

Using the linearity of the inner product we obtain

Vm, (Qn’ulJrr — Witrmn/, ul—l—m,n’)O,B,Q + (wl—l-'r,n’a ul—l—m,n’)O,B,Q = 0. (314)

Let’s start analysing the quantity Qw4+ —wi4, n/, using the fact that w;, ,» converges

to ui4, and also using the properties of ),y we have

lim O||anul+r — Wi llogo < lim OHQn’ul-H“ — Utr]l0,8,0

H2— H2x—
(3.1.5)
li — ' =0.
+ H:Lr‘,l“r"n—>0 ||ul—|—7‘ Wi+rmn ||0,B,Q
So, when H** — 0 the first inner product in (3.1.4) goes to 0 for all m. Then, the
contradiction we are looking for should raise from the second inner product in (3.1.4),

iLe. (Wigrn/s Uymn)o,8,0. We know that wy, s is an unit vector in £y, then

R

Wi4rn' = Z (wl+r,n’7 ul—l—m,n’)O,B,Q Ul+m,n'
m=0

since wy4,/ is an unit vector, we have that it is not possible that all (Wit n/, Uitm.n)0,B,0

are 0 at the same time for any value of H7)**. This is the contradiction we were looking

for.

To have more insights on the definition of W,,, we can also analyse the quantity

(QnUitr, Uitin)op,o. Using the definition of problem (1.3.7) and the properties of
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@y we have that:

1
(Qnuitr, Witin)oBo = y Aitin (Qn Uiy Uiin)0,8,0
l+in
1
= Aia(Qnul—H’auH—i,n)
l+i,n
1 1
= a(Uppr, Uigin) = ~——Npr (Uitr, Uitin)0,B,Q -
>\l+i,n )\l—l-z',n

(3.1.6)
So, the quantities (Qnuitr, Ui+in)o,8,0 are proportional to the simpler quantities (w4, witin)o,8,0-
In the next Lemma we prove that for H'®* small enough the infinity norm - defined

below - of the matrix ¥,, is bounded from above by 1.

Lemma 3.1.1. For H** small enough, there is a constant C'y independent of H**
such that

[Vnlleo < Cu,
where the infinity norm of the matriz W, is defined as || U0 1= max, {31 [[T]4]}-

Proof. From the definition of the infinity norm for matrices and from (3.1.1) we have:

}

P ‘ (QnUigr, Uitin)o,B,0
= Imax

R
1Walloe = max {3 |[@alr,

=0

(3.1.7)

r

} |

The quantities ’(QnUl+r7u1+i’n)07B,Q‘ in (3.1.7) are all bounded by 1 since w4, and

H Zﬁ:U(QnUZJrr, uler,n) Ul+m,n 0.5.0

Ui4in, for all 7 and 4, are unit vectors in || - ||o,5,0, so from (3.1.7) we obtain:

R+1
[Tnlloo < mﬁxx{ R }
H Zm:()(Qnul—H"» ul-i—m,n) Ul+m,n 0.B.9
3.1.8
B R+1 (3.1.8)
lein H Z (Qnul+7‘7 ul+m,n) Ul+m,n 0.8.0

m=0

In order to conclude the proof, we need to find a lower bound of min H Z (Q@nUitrs YWitmn) Witmn 5o
r 07 b
m

which is independent of H'**. We have already proved above that,:for H?* small
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are different

enough and for all r, the quantities H Zﬁ:o(QnUHm Utmn) Yitmn

"~y

from 0 and now we want to prove that the limit of the quantities H ZZ:O(QnUHm Witm,n) Wtm,n

for all r, is 1. This will imply that for H"** small enough there exists a constant C' > 0,

which is independent of H}'**, bounding from below all those quantities and that

> C.
0,B,0

lein H Z (Qnul—i—ra ul—l—m,n) Ul+m,n
m=0

since

Let’s start manipulating the quantity H Z,LR:O(Q»“'LL[+7-,U1+Z'7”)O’B,Q Uitin

the eigenvectors u;1;, are orthonormal to each other with respect to the inner product

(+,)o,B,0, we obtain that

H > (Qnttir, Uigin )08, Uisin
=0

R 1/2
0,3,Q = { Z |(Qnul+m ul+i,n)0’B’Q|2}

=0

R
= { |(Qnul+r — Ul4r, ul—i—i,n)O,B,Q
=0

1

+(ul+r — Wi4rn, Ul+i,n)0,B,Q + ('wl+7“,n7 ul+i,n)0,B,Q|2

(3.1.9)
In view of (3.1.9) we have that for all r:
R R
Jim H Q(Qnul—&-r»ul—i—i,n)o,&ﬂ Uikin|| s = { 2 (nli_{lgo(QnuHr — Ul Witin )0,B,0
1= 1=
+ lim (ul—l—r — Wi4rn, Ul+i,n)O,B,Q
n—oo
. ) /2
+ lim (wl+r,n7ul+i,n>0,8,ﬂ>
n—oo
(3.1.10)
From the properties of the projection operator (J,, we have that
T}LII;O(QHUI—FT - ul—l—rvul—i-i,n)O,B,Q =0. (3111)
Moreover, from Theorem 2.2.10(ii) we have that
nli_{go(uHr — Wirp, Uitin)ogo = 0. (3.1.12)
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Then, substituting (3.1.11) and (3.1.12) into (3.1.10), we obtain:

R R ) /2
lim H D (@ntttr, Uitin)oB.o Wiin =) (nh_{go(wl—i-r,mul—‘,—i,n)O,B,Q)

n—00 B,Q
0.5, =0

1=0

" ,) 12
— lim Z((wl—l—r,naul-i-i,n)(),&g)
n—oo

i=0
R
= n]LH;OHZ(wl—i-r,mul—i-i,n)o,l’j’ﬂ Ul4i,n 08,0
i
= lim |wisrmllopo = 1.
O

Lemma 3.1.2. For H'™ small enough, the infinity norm of the matriz ¥, i.e.
|0 loo := maxT{ZzR:O I[Wnlril}, is bounded from below by 1.

Proof. From the definition of the infinity norm for matrices and from (3.1.1) we have:

}

SR ‘(Qnul—i—ra Ul—i—i,n)O,B,Q’
= max .

|90l = max

T

) [\I’n]m

R
=0

(3.1.13)

T

R
H Zm:()(Qnul—l-ru ul—l—m,n) Ul4+m,n 0.5.0

Now, since the eigenvectors w4, are orthonormal with respect to the inner product

(+,-)o,8,0 to each other we obtain that

H Z(Qnul+ra Ul—l—i,n)O,B,Q Ul4+i,n

=0

R 1/2
0.8.0 = { - |(Qnul+r7ul+i,n)0,8,ﬂ|2}

7

M-

-
I
o

(QnUigrs Uiin)o,B,0| -

(3.1.14)
The result follows directly by inserting estimates (3.1.14) into (3.1.13).
O

We have already implicitly used the matrix ¥,, in the proof of Theorem 2.2.10(ii) in

49



Chapter 2, in fact the vectors w4, can be equivalently defined as

R
Witr,n = Z[\Ijn]T,iulJri,n . (3.1.15)
i=0
In the next Lemma we prove that also the infinity norm of the inverse of ¥,, is bounded

for H*** small enough.

-1

Lemma 3.1.3. For H"®* small enough, the matriz ¥+,

which is the inverse of W,
exists and we have also

15 oo < Cymt
where the constant C'y—1 is independent of HJ'**.

Proof. By contradiction suppose that is not true that for H'** small enough the matrix
W1 exists, so we should have a subsequence { HHax}%0_| of { HMax}20  guch that for
each m the matrix W, is not invertible, since its kernel is not trivial and its image
has dimension less than R + 1. Equivalently using (3.1.15), there are unit vectors

X, € REHL different from 0 for each m such that

R R R
Zl'm,r Z[\Iln}r,iulJri,n = me,r Wi4rm = 0 y (3116)
r=0 1=0 r=0

where x,, , is the r-component of the vector X,,.
Denote with {Z,, }°; a subsequence of unit vectors of the sequence {Z,,}7° ; that con-
verges to a unit vector called X', then rewriting (3.1.16) for the subsequence {Z,,/}> ,

we have
R

> Ty Wi = 0 (3.1.17)
r=0

Taking the limit of (3.1.17) we obtain

R R
0 = lim Tt W ;= xu 3.1.18
m,ﬂmg m! i+ Witrm ; r Uity s ( )
that is the contradiction we were looking for since all the vectors {u;,} 2, are orthog-
onal to each other, so the only vector X’ that should satisfies (3.1.18) is the 0 vector,
which is not a unit vector.

Since we have already proved above the existence of the inverse of ¥ for H'** small
enough, what remains to prove is the existence of a constant C'y—1 such that for H'**
small enough

197 oo < Cyor

Suppose, seeking a contradiction, that there is a subsequence { H»**} of { H**} such
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that | ¥,!||cc — o0 as m — oco. This is equivalent to | ¥, 7||; — oo and by equivalence

of norms on finite dimensional spaces (here the space of (R + 1) x (R + 1) matrices),

it is in turn equivalent to |7/, — oco. Thus there exists a sequence of vectors
€ RE*! such that ||[V,]|o = 1 for all m but

lim \|\;7m\|oo = oo, where Vi = \Il;%T\_im.
—00
Hence,
v, O\ v
lim (ﬁ) Uy = lim —=— = 0. (3.1.19)
m=00 \ ||V} [loo m=00 ||V}, [|oo
Equation (3.1.19) also implies that
R R v
= lim i Ujyim = lim _,mirwl , 3.1.20
mmZH Tl 2Vl e = H D o i (3:120)

where we denoted by ’U;n,r the r-component of the vector v/,. Thanks to the properties
of the limits and using the fact that for all ¢, w;; ., converges to u;4;, we obtain from
(3.1.20):

R / R /
. Um,r . Um,r
0 = E (nll_rgo A ) <n%1_r)réowl+rm> = g <n%1_r)rcl>o A ‘OO> upr - (3.1.21)

r=0 r=0

Since all vectors {u; .}, are orthogonal to each other, (3.1.21) implies that for all r

/

v
lim —=— = 0,
m=co ||V, [l
which means that _,
lim —m = 0, (3.1.22)
m=co ||V, oo

which is in contradiction with the fact that all vectors V], /||V], |lco are constructed to
be unit vectors in the infinity norm.
]

Now, it is time to introduce the main results of this section. The point of the next the-
orem is to show that for each n the computed eigenfunction wu;4; , is an approximation
of a true eigenfunction of the continuous problem. Next theorem is an extension of the

results in [51], since it holds also in the multiple eigenvalue case.

Theorem 3.1.4. Let s be as given in Assumption 2.2.1, and let \; be an eigenvalue of
multiplicity R+ 1 and let (A4 n, Uiyipn) be computed eigenpairs spanning the computed
eigenspace Ej,,, in the sense of Remark 2.2.4. Then, there exist true eigenfunctions
Uiy such that:
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‘O,B,Q S Cspecl(Hrr:laX)Qs, (3.1.23)

Ui — witin

and
a(Ul—i—i — Ul+imn, Ul—i—i - ul—i—i,n)l/Q 5 Cspec2(H711naX)s s (3124)

where Cspec1 and Cspeca are defined in Theorem 2.2.10.

Proof. In order to prove (3.1.23), we define Uj4; = Zf'zo[‘l’ﬁl]i,rulw and then we make
use of Lemma 3.1.3 and Theorem 2.2.10(ii):

Uiri — wiginlloso = H Z[‘I’ﬁl]i,r(ulw — Witrn)

‘O,B,Q

S [

R
‘ > e = wisrmllose
o r=0

< Cy-1(R+1) Copect (HR™)* S Copeer (H™)*

The result (3.1.24) is just a simple application of Lemma 2.2.11 and Theorem 2.2.10(i).
O

Remark 3.1.5. Note that each Upy; in general depends on n.
The next theorem extends a standard result for linear problems to eigenvalue problems:

Theorem 3.1.6. Let s be as given in Assumption 2.2.1, and let \; be an eigenvalue of
multiplicity R+1 and let (Xj1in, Ujtin) be computed eigenpairs spanning the computed
eigenspace Ej,, in the sense of Remark 2.2.4. Then, there is a constant Cpg; > 0
depending on the spectral information A\, E;, l =1,...,j such that:

(i) let, for each 0 <i < R, Wjtin be as in Theorem 2.2.10, then we have:

080 S Cadi(HP™)a(uji — Wjpin, Ujri — Wirin) /2, (3.1.25)

[wji = Wjtin
(i1) let Ujt; be as in Theorem 8.1.4 for 0 <1i < R, then we have:

/2

080 S Cagj(HY™)?

Y Ujri = wjrim

=0 3

R R
a(Ujti = Wjtin, Ujti = Ujin)
=0

(3.1.26)

Proof. The proof of (3.1.25) is obtained by reworking the results in Chapter 2. Using

the triangle inequality we have:

|wjri—wivinlloso < |ujri—Biriwivinllosa + 1Bj+iwjrin—wjtinllose, (3.1.27)
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where the value of the constant 3;4; is defined in the proof of Theorem 2.2.10. The
second term on the right hand side of (3.1.27) can be treated as in the proof of Theo-

rem 2.2.10 in order to obtain:

1Bj+iwjtin — Witinllogo < [ujri — Bi+iwjtinllope - (3.1.28)

Then, on the quantity ||uj+; — Bj+iwjtinllo,Bn appearing in both (3.1.27) and (3.1.28)

it can be applied the same arguments as in Lemma 2.2.19 to have:

i = Biriwjrimllope < (1+ pjri)wjti — Quujtillose, (3.1.29)

where pj;y; is defined within the proof of Lemma 2.2.19. Substituting (3.1.28) and
(3.1.29) in (3.1.27) we get:

[wjri — witinlloso S 1+ pjri)lujri — Qnujyillosa - (3.1.30)

The usual Aubin-Nitsche duality argument can be applied to obtain the L? convergence
for wjq; — Qnujyi. Let us denote €4 p := ujri — Qnujt; and let us define ¢ to be the

solution of the linear problem
a(p,w) = (enjri,whopa, forall we HH Q). (3.1.31)
We have
lej+inllgpo = a(@,ejyin) = ale — vn,€jpin) , forall v, €V,

where in the last step we used the orthogonality of e;4; , to the space V,,. Then applying

Cauchy-Schwarz we obtain

lejrimlld s S 1o = vnlia lejrinlie, forall v, € Vi (3.1.32)

Using Lemma 2.2.2 (together with the Assumption 2.2.1) in (3.1.32) we get

lejrinltsa S Capp (HR™)%lolitsalejrinlio
< Capp Cen(Hy™)?||Bejtimllonlejtinli,0
S Capp Cat(HR ™) |lejrinllos.olejrinlio (3.1.33)

The last step of the argument consists of dividing both sides of (3.1.33) by ||ej+inl 08,0

and applying the coercivity of the bilinear form af(-,-)
lejrinllose S CappCen(HE™) alejyin €jrin)"/? . (3.1.34)
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Combining (3.1.30) and (3.1.34) we obtain
i = wisinlloso S Caay(HX™) a(ujri — Quitjii wjsi — Quujri) /> . (3.1.35)

The result (3.1.25) comes from (3.1.35) noticing that @, u;4; is the best approximation
of u;1; in the energy norm, so wj; , should not be a better approximation than Q.
Now, we start to prove (3.1.26). Using properties of the matrix W ! as well as

Lemma 3.1.3 we have:

R R R
S Ui = tjsinllose <S> H‘I’Zl ‘ D e = wisrmllose
i=0 =0 = r=0
(3.1.36)
R
< (R + 1)0\1171 Z Huj-t,-r — wj-i—r,nHO,B,Q .
r=0

Then, using (3.1.25) on (3.1.36), we obtain:

R

R
S NUiri—ujrimllose S Cadi(HE™) a(ujr—wjirm, ujer—wigrn) /> . (3.1.37)
=0 r=0

To conclude the proof of (3.1.26), it is just necessary to use the properties of the matrix
¥,, and Lemma, 3.1.1:

R R
Z ||Uj+i — ’LLjJri,nHo’B’Q < (R+ 1)Cadj (H;;lax)s Z H\Iln ooa(Uj+T — Ujtrns Ujpr — ujJrr’n)l/Q
i=0 r=0
R
S Cagi(HY™)* " aUjir = i, Ujpr — Wjrn) /2
r=0
(3.1.38)

O

3.1.2 The PCF case

In analogy to what we have done above in Theorem 3.1.4, we have that also for problems
(1.3.8) and (1.3.9) it is possible to prove that for each n the computed eigenfunction

U4+ i an approximation to a true eigenfunction of the continuous problem.

Theorem 3.1.7. Let s be as given in Assumption 2.2.20, and let A\; be an eigen-
value of problem (1.3.8) with multiplicity R + 1 and let (Nyin, Wtin) be computed
eigenpairs of problem (2.2.48) spanning the computed eigenspace E}TEF, in the sense
of Remark 2.2.23. Then, there exist true eigenfunctions Upy; of problem (1.3.8) such
that:
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1Ujri — ujrimllope S Cheey (HP)? (3.1.39)

and
ar(Ujsi — Wi, Ujpi — wjain)/? S CLOE (HR™)® (3.1.40)

~ spec2

where Csli)gfl and Cslz)gfz are defined in Theorem 2.2.24.

Theorem 3.1.8. Let s be as given in Assumption 2.2.20, and let (; be an eigen-
value of problem (1.3.9) with multiplicity R + 1 and let ((4in,Wtin) be computed
eigenpairs of problem (2.2.49) spanning the computed eigenspace EEEF, in the sense
of Remark 2.2.23. Then, there exist true eigenfunctions Upy; of problem (1.3.9) such
that:

1Usi = wjimllose S Cupeet (HR™)* (3.1.41)

and
0,5 (Ujri = g Ujri = wjrin)? S Clpea(HP™)* . (3.1.42)

where CYCY and CYCY, are defined in Theorem 2.2.2/.

spec spec

Theorem 3.1.9. Let s be as given in Assumption 2.2.20, and let (; be an eigenvalue
of problem (1.3.9) with multiplicity R+1 and let ((j4in, Wjtin) be computed eigenpairs
spanning the computed eigenspace EJITSF, in the sense of Remark 2.2.23. Then, there
18 a constant C’fd?F > 0 depending on the spectral information (i, EIPCF, l=1,...,3

such that:

(i) let, for each 0 < i < R, wjyin be as in Theorem 2.2.24, then we have:

ujsi — witinllose S Chy (HE™) aps(Ujgi — Witin, Wjri — Wigin)"?,
(3.1.43)
(i1) let Uj4; be as in Theorem 3.1.8 for 0 <1i < R, then we have:
R R
Y MU —tjrinllope S Caft (HR™)* D awsUsi = tjtin, Ujri = tjrin) /2.
i=0 =0
(3.1.44)

3.2 Residual error estimators - the PCF case

In this section we define the “residual estimator” 7;, for the computed eigenpair
(Cjnswjm), which is computed on the mesh 7,,, for the shifted problem (1.3.9). We
decided to start with the definition of residuals for the problem (1.3.9), because the

residuals for all the other problems treated in this work are just particular cases of
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the residuals for (1.3.9). In Section 3.4 we derive from 7;,, other residual estimators
suitable for other problems, namely: the unshifted problem (1.3.8), the TE and TM
mode problems and for the general elliptic eigenvalue problem (1.3.7).

The residual estimator 7;, is defined as a sum of element residuals and edge (face)
residuals, which are all computable quantities. To simplify the notation, we define the

functional []; as follow

Definition 3.2.1. We can define for any function g : Q — C and for any f € F,

zeri(f) zera(f)
T—x r—x

9] () :-( lim ¢(z) — lim g(:i‘)), with x € f.

Definition 3.2.2 (Residual). The definition of the residual estimator n;,, involves two
functionals: the functional Ry(-,-), which expresses the contributions of the elements

in the mesh:
Ri(u,Q)(z) := ((V +4iR) - A(V +iR)u + (Bu)(z), withz € int(r), 7€ Ty,

and the functional Rp(-), which expresses the contributions from the edges (faces) of

the elements
Rp(u)(z) := [ty - A(V + z/%')u]f(:n), with © € int(f), [ € Fn.

Then the residual estimator n;, for the computed eigenpair ((jn,ujn) is defined as:

1/2
= { 5 Bt G = S + X HIRR )l G20)
T€T, feEFn

where H; is the diameter of the element T and Hy is the diameter of the edge (face) f.

3.3 Asymptotic reliability - the PCF case

In this section, we are going to prove asymptotic reliability of our error estimator
for problem (1.3.9). So, in this section (; is an eigenvalue of multiplicity R + 1 of
problem (1.3.9) for some value of K and we denote by ((jtin,Ujtin) the computed
eigenpairs for the same value of K spanning the computed eigenspace EJPS‘F in the
sense of Remark 2.2.23.

In Theorem 3.3.5 and Theorem 3.3.7 we prove the reliability of our error estimator for
eigenfunctions and eigenvalues of problem (1.3.9). The main difference between the
two results is the presence of Zf: 0 7732 tin - in Theorem 3.3.7 - in the bound for the
error for eigenvalues, instead of just Zfi 0 Mj+in, which appears in the bound for the

error for eigenfunctions - in Theorem 3.3.5. This difference reflects the different rate
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of convergence for eigenvalues and eigenfunctions that we have already encountered in
the a priori analysis. Unsurprisingly we have recovered the same discrepancy in the
rates of convergence also in the a posteriori analysis.

Furthermore, the terms .7 0 Gj+in and Py oG in Theorem 3.3.5 and Theo-

rem 3.3.7 should not go unnoticed. These terms, which do not appear in reliability

l
Jjt+in

results for linear problems, come from the non-linearity of the problem. In Section 3.4
we will show that these are asymptotically higher order terms and there is nothing to
worry about them.

In order to prove reliability in Theorem 3.3.5 and Theorem 3.3.7, we need some pre-

liminary lemmas:

Lemma 3.3.1. Let ((jn, ujn) be a calculated eigenpair of the discrete problem (2.2.49)
for some value of the parameter K and ((j,u;) be an eigenpair of the continuous problem

(1.3.9) for the same value of K. Then denoting by €j, := u; — ujn, we have

1 .
(Gt = CinUin, €)oo = 5 (G + Gin)(€jns ejmdose + 1(Gm — G)Im(uy, wjn)os.0-
(3.3.1)

Remark 3.3.2. The result in this lemma holds even if the computed eigenpair (Cjn,wjn)

does not converge to ((j,u;j).

Proof. Using the sesquilinearity of (-, -)o 5,0 and exploiting the fact that (;n,u;,) and

(¢j,u;) are respectively two normalized eigenpairs of (2.2.49) and of (1.3.9), we have:

(Gug = Gnins€in)oBa = (Guj — Gnljn, uj)oBe — (Guj — Gnlijn, Ujn)oB.0
= Gt Gn = Gnlujuin)gpa — Glugujn)ose

= (G + Gn)(1 — Re(uj, ujn)osn)

(3.3.2)
— UG = Gn)Im(uy, ujn)os.0
Another use of sesquilinearity gives us:
(€j7n7 6j7n)07879 = (u]’ u])07879 + (uj7n’ ujvn)07879 - (uj’ ujvn)OJS:Q - (u]7 /u’j/I'L)O’B’Q
=2 QRG(Uj, uj,n)O,B,Q-
(3.3.3)
The insertion of (3.3.3) into (3.3.2) concludes the proof.
O
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Lemma 3.3.3. Let ((jn,ujn) be a computed eigenpair of problem (2.2.49) for some
value of the parameter & and ((j,u;) an eigenpair of problem (1.3.9) for the same value
of K. Then, for any v € H}(Q),

T€T,

an,S(Uj — Ujn,V Z /RI u],nijn - /RF U]n
feFn

(3.3.4)
+(Guj — it 0)o,B,0-

Remark 3.3.4. Again, the result in this lemma holds even if the computed eigenpair

(Cjmsujm) does not converge to (j,uj) in the sense of Remark 2.2.23.

Proof. The equation (3.3.4) results from integration by parts. We start from the term
on the left hand side of (3.3.4): using the fact that ((j,u;) is an eigenpair of (1.3.9)
yields

A5 (Uj — Ujn,v) = ags(uj,v) — g s(Ujn,v)

= Glujv)osa — ars(Ujn,v). (3.3.5)

The first step in order to derive the right hand side of (3.3.4) is to apply element wise
integration by parts to a,(u;n,v), yielding:

ak(Ujn,v) = Z/Av+z/€ujn-( —iR)T

7€T,
= — Z / ( V 4 i) (V+i/¥)uj7n)v
7€T,
(3.3.6)
+ Z/nf A(V +iR)ujnlf 0
fe€Fn

The domain €, of problem (1.3.9), is a closed surface, i.e. it has no boundaries. So, in

this case all the faces f € F,, are within the domain.
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Using the fact that ax s(-,-) = ax(-,-) + S(-,)o,8,0, then (3.3.6) and (3.3.5) yield

aK’7S(uj - ujzn’ U) = _aﬂ(ujzn’ U) - S(uj7n’ U)078’Q + CJ (uj’ U)(]:B»Q
= Z / ((v+i:%’) -A(v+z'/2;‘)uj,n>v
T€T, YT

(3.3.7)
= /f[ﬁf-.A(V +iR)ujly

fe€Fn

_S(uj,na U)O,B,Q + CJ(U‘J7 U)07B,Q-

Finally we obtain (3.3.4) from (3.3.7) by noticing that ¢;(u;,v)o.8.0 = (n(Ujn, v)oB0+
(Gjuj — Cintjn, v)o,B,0 and then, splitting elementwise the two last linear terms on the
right hand side of (3.3.7):

ar,5(Uj — Ujp,v) = Z (/(V +iR) - A(V +iR)ujn — SBuj, + Cj7nBUj7n)’U

TGTn

S /fnf AT +iR)ujly T

FeF,

+(Cjuj — Cjntjm, 0)0,B,0-
O

The proof of reliability for eigenfunctions comes as an application of the previous
lemmas. But before that, let us introduce the Scott-Zhang quasi-interpolation operator
(see [48] for details). An important role in the next proof is played by this operator
I, : HY(Q) — V,,, which satisfies for any v € H(Q):

v — Invlor S Hrv)1w,, (3.3.8)

1
0,f 5 H]? ‘U|1,wf) (339)

|lv — Iv

where w; is the union of all the elements sharing at least a point with 7 and where wy
is the union of all the elements sharing at least a point with f. Since the nature of our

problems, we restrict the use of the operator I, to functions v € H(Q).

Theorem 3.3.5 (Asymptotic reliability for eigenfunctions). Let (; be an eigenvalue of
(1.3.9) of multiplicity R+ 1 and let (Cj4in, Wjtin) be computed eigenpairs for the same

= ~ - PCF .
value of K spanning the computed eigenspace Ej ", in the sense of Remark 2.2.23.
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Let also the true eigenfunctions Ujy; € E]PCF, fori=0,..., R, be defined as in Theo-

rem 3.1.8. Then we have for ejiin = Ujti — Ujtin, fori=0,..., R, that

R R R
> ans(eiyim €irin) ' S nivin + > Gjtim, (3.3.10)

where
(ejJri,na 6j+i,n)O,B,Q
)1/2'

1
Gjtin = §(Cj + Cjtin) (3.3.11)

a/@,S(ej—H‘,n: €jt+in
Remark 3.3.6. In Theorem 5.4.1 in Section 3.4 we will prove that the terms Gjiin

are “higher order” (in a sense which will be made precise below).

Proof. We are going to prove firstly that for all i =0,..., R:
an,S(€j+i,n,€j+i,n)1/2 Sjtvim + Givin, (3.3.12)

then in order to prove (3.3.10) it is just necessary to sum (3.3.12) over i.
Note first that, since (¢j,Ujti) and ((jin, Uj+in) respectively solve the eigenvalue
problems (1.3.9) and (2.2.49), we have, for all w,, € V},,

Qg S (ej-l—i,n’ €j+i,n) = an,S(ej—i-i,na €j+in — K S(ej+l ny wn)

wy) + a
= an,S’(ej—i-i,naej-‘ri,n_ n) + ak ( j+z)wn) - aﬁ,S(Uj-‘ri,nywn)
wy) +

= ars(€jtin, €jrin — (GUjwi — CjtinUjtin, Wn)o,B,0
= S<€j+i nsy €j+in ) (C j+i — Cj+z"nu‘j+z"n, €j+in — wn)O,B,Q
+ (CjUj+z Cj-‘rl nWjtimn, €j+i, n)OBQ (3.3.13)

We will expand the first and the third terms on the right-hand side of (3.3.13) using
Lemma 3.3.1 and Lemma 3.3.3, then the middle term will be cancelled out.
Using Lemma 3.3.3, we have for all v € H(Q),

an,S(ej—&—i,mv) = /RI Wjtin, Cjtin — S)V /RF uj-Hn v
T€T, feFn
+  (GUjri — CrinUjtin, V)o,B,0 - (3.3.14)
Hence for all w,, € V,,,
@5 (€jtins €bim — Wa) = D / Ri(ujtin Gin — S)(€jtin — wn)
TET, T
_ Z /RF u]_Hn ej_Hn wn)

feFn

+  (GUjti = GtimUjtin: €j+in — Wn)osa- (3.3.15)
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Moreover, from Lemma 3.3.1 we have

1
(CUjti — CjtinUjtin, €j4+im)0B,0 = §<Cj + Gitin) (€j4im, €j4im)0,8,0
(3.3.16)

+ 1(Cin — GM(Uj 1, Ujrin)o,5,0-

Substituting (3.3.15) and (3.3.16) into (3.3.13), we obtain:

n5(€j4in €jrin) = D /Rl(uj+i,n,Cj+¢,n—S)(€j+i,n—wn)
T€T, VT

- Ej/Rﬂmewﬁm—ww
feFn St

1
+ 5(@‘ + Cjtin) (€4ims €+in)0,8,0

+ (Gt — GIM(Ujpi, Ujrin)o,8,0- (3.3.17)

Noticing that a. s(€j+in; €jtin), Cj+in and ¢ are all real, we have a. s(€j4in, €jtin) <

|Re ay,s(€j+in,€j+in)| and applying the triangle inequality, yields

> | Riujvim Gin — S)(ejrim — wn)

TE€T, VT

ZLMWWMMVW>

feFn

ar,5(€jtin, €jyin) <

+

(3.3.18)

1
+ 5(@‘ + Cjtin)(€j+imn: €j4in)0,8,0-

In particular we are allowed to choose w, = I,eji;n where I, is the Scott-Zhang
interpolation operator, defined above in (3.3.8) and (3.3.9).
Now substituting w,, = Inejiin in (3.3.18) and using Cauchy-Schwarz, together with
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the inequalities (3.3.8) and (3.3.9), we obtain:

ar,8(€jtins €j+in) <

N

_l’_

> IR Wsi0, Grim — S)llosllejrin — Tn€jrin
T€T,

Z | Rr(wjtin)llo,fll€j+in — In€jtin
fEFn

0,7

07f

5(@- + Ctimn)(€j+in, €j+in)0,8,0

> Ho||Ri(ujiin, Grim — S)lorlejrinliw,
T€T,

1/2
S HP | Rp(ujrin)loflejinlie,
feFn

1
Q(Cj + Citin)(€j+ims €j4in)0,8,0- (3.3.19)

Furthermore, manipulating the weights of the 1-seminorm in (3.3.19) we obtain:

an,S(ejJri,na ej+i,n)

S D He|Ri(ugpin, Grin — S)llorlejrimltaw,
T€T,

1/2
+ > HBe(ujgim) loflesinliac,
fEFn

1
+ 5(@' + Citin)(€j+imn, €j4in)0,8,0 (3.3.20)

Another easy application of the discrete version of the Cauchy-Schwarz inequality yields

1/2
an,S(€j+z‘,na€j+i,n) Snj-s—i,n{ Z |ej+i,n’%,A,wT + Z |€j+i,n|i,4,wf}

1

T€T, fefn

+§(Cj + Civin)(€j4imn, €j+in)0,B.0

1
S Njviml€jrinli a0 + i(Cj + Citin) (€j4ims €j4in)0.B,Q -

(3.3.21)

Now to complete the treatment of the terms in (3.3.21), we can use Theorem 2.1.12 to

get:

an,S(ej—i-i,na ej+i,n) S Nj+in0k,S (ej+i,n’ ej—H’,n)

1z 4 (GG + Civin)(€j+ins €j+in)0,B,0-

1
2
(3.3.22)

Finally, in order to conclude the proof we have just to divide both sides of (3.3.22) by

a5 (€jvin, €j+i’n)l/2 and sum over 1.
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The last result of this section is the asymptotic reliability for eigenvalues.

Theorem 3.3.7 (Asymptotic reliability for eigenvalues). Under the same assumptions

as in Theorem 3.3.5 and denoting by ejiin = Ujii — Ujyin, we have:

R R R
2 !
Z |Gt — Gl S 2 Mitin T Z Gitin
=0 =0 =0

where

(€j+ims €j+in)0,B.2 1
NP izt (G = Gitim) (€jim €j+in)oB 0

1
Gy = Mivi —(& + Cipim)
s J+n J J+in
g 2 &,S(€j+i,n7 €itin

Remark 3.3.8. In Theorem 3.4.2 in Section 3.4 we will prove that the terms G;-H’n

are also “higher order”.
Proof. In Lemma 2.2.26 we have shown that
(Gi+im = Gl = ax,s(€j4im; €j4in) — Ci(€jtims €j+im)0,B,0- (3.3.23)
Hence, for any i = 0, ..., R, substituting (3.3.12) twice in (3.3.23) leads to the result:
< 1/2 1
1Gitim — Gl S Mjtinan,s(€jtins €j4in) '~ + §(Cj+i,n + i) (€jti,ns €j+in)0,8,0
= Gj(ejtins €j+in)oB0
< 1/2 1
S Nj+in@n,s(€jvins €ivin) =+ 5 (Grin =€) (€j+im, €j4in)oB.0

(€j+ins €j+in)0,5,0
1/2

1
< pn2 . + i (Cii o + Co
S Mjin T Mising Givin T 6) x5 (€jtims €jtin)

1
+§(Cj+i,n — ) (€jtims €jtin)o.B.Q-

Then the proof is concluded summing over 3. O

3.4 Further asymptotic reliability results

In this section we have collected other asymptotic reliability results. Some of them
are related to the TE and TM mode problems, while others are related to the general
elliptic eigenvalue problem (1.3.7). The first two theorems show that the terms G4,

63



in Theorem 3.3.5 and the terms G’

i+in 0 Theorem 3.3.7 are asymptotically higher

order terms.

In this section we assume that the a priori upper bounds proved in Theorem 2.2.33 and
in Theorem 2.2.10 are sharp. With e;yin = Uj4+i — wjyin, we see from (3.1.42) that
.5 (€jrim, €jim)/? = O((Hm»x)%), where 0 < s < 1. What we want to prove now is
that the asymptotic order of G1;,, is greater than s for all t = 0,..., R, i.e. Gjyip is
a higher order term. Moreover, if, for all i = 0,..., R, G4 is a higher order term,
from the inequality (3.3.10) it is possible to conclude that each 7,4, should have at

least the same asymptotic order as the energy norm of the error a. s(€j4in, ejﬂ-,n)l/ 2,

Theorem 3.4.1. Let ((jyin, Uj+in) be a calculated eigenpair of the discrete problem
(2.2.49) for some value of K and let ((j,Ujyi) be the corresponding true eigenpair of
the problem (1.5.9). Then we have that the term Gji;y in Theorem 3.3.5 has higher

order with respect to the energy norm of the error:
Givin = O((HR™)%).

Proof. We start from the definition of G;;, given in Theorem 3.3.5, then using The-

orem 2.1.12; we have

(ej—l—i,na ej—i—i,n)O,B,ﬂ
1/2

1
Givin = 5(G+ Crin)
s 2 I g s(€jins €in)

1 1/2
N i(Cj + i) (€j+im, €j+i,n)o,/5,9~

Since, from (3.1.39), we have that (ej4;n, €j+i7n)(1]’/§,9 = O(HD>)25 then

1 max
Gjitin S Chon (G + Giin) (H™ )%,
O]

Form (2.2.53) we know that |(j1in — (| = O(HR®)25 where 0 < s < 1. What we
want to prove is that the term G;Hm appearing in Theorem 3.3.7 is O((H,TaX)QS). In
the following theorem we do even better.

Theorem 3.4.2. Let (Cjyin, Ujtin) be a calculated eigenpair of the discrete problems

2.2.49) for some value of K and let ((;,U;4;) be the corresponding true eigenpair for
Jr Y+

the same value of K. Then we have that the term G, . in Theorem 3.3.7 has higher
order than the error of the eigenvalues:
i = O(HP™).
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Proof. We start from the definition of G’,

i+in and using Theorem 2.1.12, we have

(ej+i,n7 ej—i—i,n)O,B,Q
aH,S(ejJri,n» €j+i,n)1/2

/

1
jtin = 77j+i,n§(Cj + Cjtin)

+ 5(@' — Gitin)(€j4ims €j4in)0,8,0

1 1/2 1
S Mjring (G ‘|‘<j+i,n)(ej+i,na€j+i,n)07/B7Q + 5(G = Gin)(€j+in, €jrin)oBg.

(3.4.1)
Using (2.2.53) and (3.1.39) on the right hand side of (3.4.1) we obtain

1 PC X 1 PC X
;‘—&—i,n S 77j+i,n§Cspefl(Cj + Cj+i,ﬂ)(Hgla )25 + §(Cspe§1)2 (H;Lna )65’

since from Theorem 3.4.1 and from (2.2.55) we know that n;i;, has at least order

(H»*x)s we conclude that G; +in has at least order 3s. O

Now, we move to prove the asymptotic reliability result for the un-shifted problem
(1.3.8). The difference between the problem (1.3.8) and the problem (1.3.9) is the
linear term S(u,v)p . This term introduces a shift in the spectrum of the problem,
but it has no effect on the eigenfunctions. So, for any eigenvalue (; of (1.3.9), there is a
corresponding eigenvalue A\; = (; — S of (1.3.8). The same happens to the eigenvalues
of (2.2.48) and (2.2.49), i.e. Aj, = (jn —S. Moreover, for any function u € H}(Q) and
for some value of S > 0, the bilinear form a, s(u,u) > ax(u, ).

Theorem 3.3.5 and Theorem 3.3.7 can be easily adapted as follows to the un-shifted

problem:

Theorem 3.4.3 (Asymptotic reliability for eigenfunctions). Let \; be an eigenvalue of
(1.3.8) of multiplicity R+1 and let (A j1in, Ujt+in) be computed eigenpairs for the same
value of K forming the computed eigenspace EﬁSF, in the sense of Remark 2.2.23. Let

also the true eigenfunctions Ujy; € E]PCF, fori=0,...,R, be defined in Theorem 3.1.7.
Then we have for ejiin = Ujti — Ujyin, fori=0,..., R, that
R R R
Zaﬁ(ej-i-i,n,ejﬁ,n)l/z S an—i—i,n + ZDj+i’”’ (3.4.2)
i=0 i=0 i=0
where
1 1/2
Djvin = 5+ Xjsin +25)(€j4in: €j+in)o 5,0-

Proof. For any value of S > 0 we have that a.(€jtin,€j+in) < Gk, 5(€j1in, €jtin). SO
applying (3.3.10) we obtain

R R R R
> an(ejrim irin)’? <D ans(ejrim eiuran)’? S migin + > Gitim.
i=0 i=0 i=0 i=0

(3.4.3)
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Moreover, the computed value of the residual R; is not changed by the shift because:
R[(Uj.m‘,n, Cj—i—i,n - S) (.%') = ((V + Zl_{) . .A(V + i/?a’)ujﬁ,n - SBUj_;,_i,n + Cj+i,n8uj+i,n)($)
= ((V+iR) - AV +if)ujpin + AjtinBujpin) (@)

=: R[(Uj—l-i,na )\j—l—i,n) (z).

The residual Rp is also unaffected by the shift because, in its case, its value does not
depend on the computed eigenvalue. So, we can conclude that the computed value of
the residual estimator 7,4, is unaffected by the value of the shift S > 0.

The term Dj;, comes from the term Gji;,, to which we apply Theorem 2.1.12 and
we undo the shift:

(€j4im» €j+im)0,B,0
172

1
Givin = 5(G+Grin)
e 27 e an,S(ej-i-Ln’ej—‘ri,n)

(€j+i,n, ej—i—i,n)O,B,Q
an,S(€j+i,n7 ej+i,n)1/2

1
= 5N+ Xjtin +25)

A

1/2
5+ Ajin + 25)(€j4in, errin)igo = Ditin
0

Theorem 3.4.4 (Asymptotic reliability for eigenvalues). Under the same assumptions

as Theorem 8.4.3 we have:

R R R

2 /
E : ’Aj—i-i,n - AJ‘ S § Ni+in + E :Dj—i-i,nv
=0 =0 =0

where we have denoting by ejiin = Ujii — Ujyin that:

1 1/2 1
Lim = Mitin 5N At + 28) (€500 €jim)opn + = (A = Ajrin) (€j4im, €4+im)0,5.0-
J+i, 9 s 2

Proof. Applying Theorem 3.3.7 and noticing that A\j;, — Aj = (jyin — (5, We have:

R R R
2 !
Z [Ajtim = Ajl S Z Mj+in T Z Givin:
i=0 i=0 i=0

We have already seen in Theorem 3.4.3 that the residual estimator 7;4; , is unaffected

by the shift. What remains to show is what happens to the term G;. +in shifting back
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the problem:

1 (e. L el ) 1
/ . . . J+in> €j+i,n)0,5,Q N — . .
j+im = TMj+in 5(@ + C]-i—z,n) an,S(ej-Hm,a €j+i,n)1/2 + 2 (C] Cj-i—l,n)(e]-i-l,n? ej+z,n)0,B,Q
< 1 1/2
S Mivim 5N+ Ajrin + 29)(€jvim, €jin)opo + 5N = Ajrin) (€5+in, €jrin)o.B0
=: D;-_,_Ln,
where we have made use of Theorem 2.1.12. O

Remark 3.4.5. The terms Djyi, and D

ivin are higher order terms from the same

arguments used for Gji;n and G;-H-’n - Theorem 3.4.1 and Theorem 3.4.2.

Remark 3.4.6. The TE and TM mode problems are particular cases of problem
(1.3.8): in the TE case we have that B = 1, instead in the TM case A = 1. So
the asymptotic reliability result is applicable to the TE and to the TM mode problems,

too.

Remark 3.4.7. The proof of asymptotic reliability for the general elliptic problem
(1.3.7) is not more involved. This problem has Dirichlet boundary conditions, so the
bilinear form a(-,-) is already coercive. Then we do not need to introduce a shift.
This implies that the reliability result for (1.3.7) comes from Theorem 3.3.5 and The-
orem 3.8.7 (with & = (0,0)), as before, but this time we are allowed to choose S = 0.

3.5 Asymptotic efficiency - the PCF case

This section contains the proof of asymptotic efficiency for our residual estimator ap-
plied to the unshifted problem (1.3.8) (the same proof holds also for the general elliptic
problem (1.3.7)). We are not going to prove asymptotic efficiency for the shifted prob-
lem (1.3.9) because it does not come from a physical model. It was introduced in the
first place just to let us prove easily reliability.

The asymptotic efficiency guarantees that the residual estimator is not asymptotically
unreasonably greater than the actual error. In order to prove the efficiency, we need
first a weaker result called “local efficiency”. Then the asymptotic efficiency will be

proved in Theorem 3.5.6. The same approach has been used in [52] and in [53].

Notation 3.5.1. In this section we extend the Notation 3.0.34 in such a way that <
and 2, will hide constants depending also on H and Hy only under the condition that

such constants will remain bounded above and below when H; and Hy go to 0. So, we
have e.q. 1+ H, < 1.

~
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In this section we are going to use bubble functions, which are in general smooth and
positive real valued functions with compact supports and bounded by 1 in the L*
norm. The proof of efficiency for a posteriori error estimators is normally carried out
with bubble functions, which have many useful characteristics. Firstly, these functions
have local support, so it is possible to define a bubble function on each element and on
each edge in the mesh. This will reduce the proof of efficiency from the whole mesh to a
local result. Furthermore, it is possible to prove inverse estimates for bubble functions
of standard results involving norms, thanks to their regularity. These estimates are
collected in the next proposition. We define for any edge (face) f the set A, which
is the union of the two elements sharing f. In particular we need for any element 7 a
real-valued bubble function ), with support in 7 which vanishes on the edge of 7 and
for any edge f, and we need a real-valued bubble function ¢ that vanishes outside the
closure of Ay. In [52, Lemma 3.3], such bubble functions 1, 1 are constructed using

polynomials. Moreover, it is proven that 1, ¢ satisfy the following properties:

Proposition 3.5.2. There are constants, which only depend on the regularity of the

mesh T, such that the inequalities on an element T

Ivllor S e ?vllor, (3.5.1)

’¢T’U‘1,T S Hfr_lHUHO,Ta (352)

and on a edge (face) f

1/2
lwlloy S 197 wllos, (3.5.3)
—1/2
W wiia, S Hy ' llwllo,s, (3.5.4)
1/2
1oy wllon, S Hfllwllo,s, (3.5.5)

hold for oll 7 € T, all f € F,, for all polynomials v and for all polynomials w.
Proof. See [52, Lemma 3.3]. O

In the next two lemmas we bound the residuals R; and Rp (defined in Definition 3.2.2

above) in terms of the energy norm of the error.

Lemma 3.5.3. Let (A\jn,ujn) be a computed eigenpair on T, of (2.2.48) for some
value of K and (Aj,uj) be a true eigenpair of (1.3.8) for the same value of K, then for

any element T € T, we have

He || Rr(ujn, Nw)llor S IAY2(V +4R) (uj — wjn) |lo.r

(3.5.6)
+Hr [ Ajntjn — Ajusllos,r
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Proof. Let i, be the real-valued bubble function introduced above and set
wr = Pr RI(Uj,na)\j,n)-

Because we are using P; elements and since A, B are assumed constant in the interior
of each element, the residual Ry is a polynomial function on 7. This fact together with
(3.5.1) leads to

IR (Wms M) B S 102 Re(wjn, Njin) 13 1

hence by the positivity of ¢;:

| Rr(wjmn, Ajn “OTN/¢T|RI Ujny Ajn) /Rl Uj,ny Ajyn ) Wr (3.5.7)

Since supp ¥, = T, we can integrate by parts the right hand side of (3.5.7), using the
fact that 1, vanishes on 97, to get

IR (g A 2s < / ((V +iR) - A(V + iR)ujn + A B ujn) Wy

= (—a,{(uj,n,wT) + )\j,n(uj,n,wT)o,B,T). (3.5.8)

Because we have supposed that (\j,u;) is an eigenpair of the continuous problem
(1.3.8), it satisfies:
ax(uj,wr) = Xj(uj,wr)op0- (3.5.9)

Then adding (3.5.9) to (3.5.8) and noticing that supp ¢, = 7 we have

|’R1(uj7n7)‘j7n)”g,7' ,S [ / ((V—FZH)( —Uj, n) . A(V—ZF&‘)U}*T) + ()\j,nujvn—)\juj,wT)oﬁﬁ .
Hence by the Cauchy-Schwarz inequality and applying (2.1.16) yields:

1R (o, )8 S A2V +iR) (w5 = wyn) |, [|AY(V = iR,

lo.»

+  Njntjn — Ajugllosr lwrllosr

N

HA1/2 V +iR) (uj — ujn HOT ||wT”1T
(3.5.10)

+  Njnusin — Ajugllosr [lwrllos,r

The last step of the proof is quite straightforward: using the definition of w, and using
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(3.5.2), then we obtain from (3.5.10):

1R (wjms ) 15+ S [+ HY) AV +iR) (g = wjin)| o,

HlXjntwjn = Ajuillo s | 1R (s Ajn)
then multiplying each side by H-||R;(u;n, )‘Jn)Hai yields the result.
O

Lemma 3.5.4. Let (\jn,ujn) be a computed eigenpair on T, of (2.2.48) for some
value of K and (Aj,u;) be a true eigenpair of (1.3.8) for the same value of K, then we

have for any face f in Fy

H? | Re(un)loy S Sren, AV +iR) () = win)llo
(3.5.11)

+ 2ren,; Hy Xjntijn — Ajujllos.r
Proof. Let 1; be the real-valued bubble function introduced above and set
= ¥y Rr(ujn).

Applying Lemma 3.3.3 to problem (1.3.8), i.e. choosing S = 0 in Lemma 3.3.3, and
also exploiting the fact that supp ¢y = Zf, we obtain

/RF U]n wy Z /RI ujn7 ]n - a,{(’U,j—UjVn,wf)
f

TeAs (3.5.12)
+ (A = Ajnttjn, wr)osa -
Then using the Cauchy-Schwarz inequality and (3.5.3) on (3.5.12), we get:
IRe(uin) s S D IRr(wjms Ajm)llor lwgllo.r (3.5.13)

TEAf

+ AY2(V +4R) (u) — ujn)lloa, MYV +iR)wloa,

+ N Njnwin — Ajujllosa, wrllosa, -

Now, we have to estimate each of the three terms on the right-hand side of (3.5.13).
We start from the sum at the beginning of the right hand side of (3.5.13): this sum
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can be treated using (3.5.5) and (3.5.6)

1/2
> R (i N o wgllor S Hf/ > R (wjn, Ajn) llor 1RE(ujn)llo.s
TEAf ’TEAf

< HY? |Rp(ujn)llos H(AY2(V +iR) (uj — ujn)llor
f
TEAf

(3.5.14)
+ H; H>\j,nuj,n - Aj“j“(),B,T>~
Now it is the turn for the second term on the right hand side of (3.5.13). We are

interested just in the component |]A1/2(V+i/%’)waovAf of this term. On this component

we can use (2.1.16) to obtain:

IAY2(7 +iR)willoa, = an(wp,wp)'? < Jlwsllia,

~

< (flwy

0.4, + |wplia,).

Then using (3.5.4) and (3.5.5) we get:

N 1/2 —1/2
IAY2(V +iRywpllons, < (Hf + H V%) | Rp(uin)lloy- (3.5.15)

~

The remaining term to treat is the last term on the right hand side of (3.5.13). Again
we are just interested in ||wy|lo,5.4, and not in the whole term. We can use (3.5.5) in

order to obtain:
1/2
lwslosa, S lweloa, S Hy” |Re(ujn)los (3.5.16)
Now substituting (3.5.14), (3.5.15) and (3.5.16) in (3.5.13) we get:

|1Rp(ujn)

o S IRp(ujn)

1/2 —1/2 [N
o O (H?+ HV?) | AY2(9 +iR) () — ujn)llo.r
TEAf

FHY? [Njntin = Aguslo.s -
To conclude the proof we have to multiply both sides by H}/2”RF(Uj,n)Ha}:

1/2 [N
H2|Re(uzn)llos < D IAYA(V + i) (uj — wjn)llor
TGAf

+ Hp [|Ajnujn — Ajugllosr -
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In Lemma 3.5.5 we prove a local version of the efficiency, this result is extended to

whole domain (2 in Theorem 3.5.6.

Lemma 3.5.5 (Local asymptotic efficiency). Let A\; be an eigenvalue of (1.3.8) of
multiplicity R+ 1 and let (Nj1in,Uj+in) be computed eigenpairs for the same value of
K forming the computed eigenspace EﬁgF, in the sense of Remark 2.2.23. Let also the

true eigenfunctions Uji; € E]PCF, fori=20,..., R, be defined in Theorem 3.1.7. Then

for eachi=0,...,R we have

Mivina, = (Z (Hf ||R1(uj+i,7“Aj+i7")||(%,r> + Hy IIRF(Uj+i,n)||3,f>
TEAf

<> (HAW(V +iR) (Ui — wjrin)ll5 - + HElIAjvintjpin — /\jUj+z‘H§,B,T>-
TGAf
(3.5.17)

Proof. The local efficiency result (3.5.17) for the convex hull Ay comes as an application
of Lemma 3.5.3 to the two element 71(f) and 72(f) and an application of Lemma 3.5.4
to f. O

Theorem 3.5.6 (Asymptotic efficiency). Let A\; be an eigenvalue of (1.8.8) of mul-
tiplicity R+ 1 and let (Njyin, Uj4in) be computed eigenpairs for the same value of K
forming the computed eigenspace EJE”SF, in the sense of Remark 2.2.23. Let also the

true eigenfunctions U;i; € E]PCF, fori=0,..., R, be defined in Theorem 3.1.7. Then

we have that the global residual estimator is bounded by the energy norm of the error:

R R R
D nivin S awUi—tjim: Uiri—tirin) % + > IHr (A jrinttin—AUssi)llo.s.0-
1=0 1=0 1=0

(3.5.18)

Proof. To prove the global efficiency we have to sum (3.5.17) for all edge (face) f and
then for all 4. So, summing (3.5.17) for all f, we have:

77]2'+i,n SJ Z { Z (”Al/z(v + Z’z)(UJ-H - uj-Hm)”g,‘r
feEFn TEAf ( )
3.5.19

+HZ|| iU i — AjUjﬂ'll%,zs,T) }

The subsets Ay, for each value of f, are not all disjoint. Because we are using triangle

elements, the maximum number of overlapping subdomains Ay at any point in the
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interior of an element is 3. So we can put an upper-bound to (3.5.19) as
7732+i,n S an(Uj_t'_i — Ujyin, Ujti — Uj-i—i,n)
(3.5.20)

+ 1 Hr (Njginttjgin — MU 15 5.0 -

Then summing (3.5.20) for all i =0, ..., R, we get the global efficiency result.
O

Remark 3.5.7. Using Theorem 2.2.33(i) and (ii) on the term ||Hr(Njtintjtin —
NiUjvi)llos.a in (3.5.18), we have that it is a higher order term respect to the energy

norm of the error:

| Hr(Ajtintjtin — Aj Uj+i)

080 S HI™(Njgin — Nl ujrinllose

+ N wjrin — Ujrillose) = O(H)?+1,

This concludes the proof of the global efficiency for the model problem (1.3.8). This
result and the local version of it holds also for the TE and TM mode problems and for
the general elliptic eigenvalue problem (1.3.7), since they are particular cases of that
problem. In particular for (1.3.7) you have to repeat the proof with £ = (0,0) and

you have to take account of the different boundary conditions.
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Chapter 4

Convergent AFEM for eigenvalue

problems

In the last decades, mesh adaptivity has been widely used to improve the accuracy of
numerical solutions of many scientific problems. The basic idea is to refine the mesh
only where the error is supposed to be large, together with the aim of achieving an
accurate solution using an optimal number of degrees of freedom. There is a large
numerical analysis literature on adaptivity, in particular on reliable and efficient a
posteriori error estimates (e.g. [2]). Recently the question of convergence for adaptive
methods has produced a great amount of interest and a number of convergence results
for boundary value problems have appeared (e.g. [20, 42, 14, 13]). The only other
work about convergence for eigenvalue problems, that we are aware of, is [12], which is
actually more recent the ours.

The main result of this section is the proof of convergence for our adaptive FEM for
elliptic eigenvalue problems, however the result presented in this work holds only for
simple eigenvalues. We are going to use linear conforming finite elements on triangles.
The domains of the considered problems would be bounded polygonals or polyhedrals
and the problems would be subject rather to Dirichlet boundary conditions or to pe-
riodic boundary conditions. In particular, we are going to discuss the convergence of
the method applied to problems (1.3.7), (1.3.8) and (1.3.9).

The outline of this chapter is as follows. The first Section 4.1 is devoted to the proof
of convergence for the general elliptic eigenvalue problem (1.3.7). The same results
have been submitted for publication in [26]. In the second section, Section 4.2, the
convergence proof for problems arising from PCF applications, and in particular for

the model problem (1.3.8), is exposed.
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4.1 Convergent AFEM for generic elliptic eigenvalue prob-

lems

The outline of this section is as follows. In Subsection 4.1.2, the convergence result for
problem (1.3.7), which is the main result of this section, is presented. Meanwhile, in
Subsection 4.1.1 we prove that mesh refining ensures error reduction (up to oscillation
of the computed eigenfunction).

Our refinement procedure is based on two elementwise defined quantities, firstly the
a posteriori error estimator coming from Definition 3.2.2 and secondly a measure of
the variability (or “oscillation”) of the computed eigenfunction. Measures of “data
oscillation” appear in other convergence results for linear boundary value problems
(e.g. [42]). The definition of the error estimator 7,, when adapted to problem (1.3.7),

becomes:
1/2
o 1= { S 2Ry MR, + S Hf\RFwn)u%,f} , (4.1.1)
€T, fe€Fn
where
Rp(un)(z) == [fiy - AVun]f(a:), with x € int(f), f € Fn.
and

Ri(up, A\p)(z) := (V - Avu, + )\nBun) (z) = ()\nBun)(x), with z € int(7), 7€ T,,

where in the last equality we exploited the fact that we use linear elements on triangles.
Our algorithm performs local refinement on all elements on which at least one of these
two local quantities is sufficiently large. We prove that the adaptive method converges
provided the initial mesh is sufficiently fine. The latter condition, which is absent in
adaptive methods for linear symmetric elliptic boundary value problems, commonly
appears for nonlinear problems and it can be thought of as a manifestation of the
nonlinearity of the problem.

The mesh refinement that we adopted is the same already used in [20], [42]. The idea
is to refine a subset of the elements of the mesh 7, whose side residuals sum up to a

fixed proportion of the total residual n,.

Definition 4.1.1 (Marking Strategy 1). Given a parameter 0 < 6 < 1, the procedure

1s: mark the sides in a minimal subset .7:",1 of Fn, such that

1/2
( > nfc,n) > 0, , (4.1.2)

fe€Fn
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where Ny 18:

1 1/2
Mo = 51 He RiCun MG, + 1H”Re(un)ll 5 (4.1.3)

where we denoted by Ay the union of the two elements T1(f) and 12(f) sharing f.

To satisfy the condition (4.1.2), we need first of all to compute all the “local residuals”
n¢rn and sort them according their values. Then the edges (faces) f are inserted into
F, in decreasing order of 7y, starting from the edge (face) with the biggest local
residual, until the condition (4.1.2) is satisfied. Note that a minimal subset F,, may
not be unique. Then, we construct another set 7,, containing all the elements of 7,
which share at least one edge (face) f € F,.

In order to prove the convergence of the adaptive method, we require an additional
marking strategy, which will be defined in Definition 4.1.4 below. The latter marking
strategy is driven by oscillations. The same argument has been already used in some
papers about convergence for source problems (see [42] and [40]), but to our knowledge
has not yet been used for analysing convergent algorithms for eigenvalue problems.
The concept of “oscillations” is just a measure of how well a function may be ap-
proximated by piecewise constant elements on a particular mesh. For any function
v € L?(2), and any mesh 7,,, we introduce its orthogonal projection P,v onto piece-

wise constants defined by:

1
(Pyv)|r = M/v, for all 7€ 7,. (4.1.4)

Notation 4.1.2. In this chapter we define Hy, to be a piecewise constant function
which assumes in the interior of each element T of the mesh 7Ty, the size of the element,
1.e.

Vr €7, H,|lr = H;.

In the next definition we make use of the projection operator P:

Definition 4.1.3 (Oscillations). On a mesh Ty, we define
osc(v,7y) = ||Hp(v — Pyv)|lo,8,0- (4.1.5)

Note that 1/2
osc(0 ) = (30 120~ PuvlRs, )

T€T,

and that (by standard approximation theory and the coercivity of a(-, ")),

osc(v,Tp) < (H™)2a(v,0)Y? | forall ve HMQ). (4.1.6)

~
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The second marking strategy (introduced below) aims to reduce the quantity osc cor-

responding to a particular approximate eigenfunction .

Definition 4.1.4 (Marking Strategy 2). Given a parameter 0 < 0 < 1: mark the

elements in a minimal subset ’]N;L of T, such that
05¢(tin, Zp) > 60 osc(un, Tp) . (4.1.7)

Note that a minimal subset 7, may not be unique. To satisfy the condition (4.1.7), we
need first of all to compute all the local terms H2||(u, — Ppuy) Hg 5, forming osc(uy, 7,)
and sort them according their values. Then the elements 7 are inserted into 7, in
decreasing order of the size of those local terms, until the condition (4.1.7) is satisfied.

Our adaptive algorithm can then be stated:

Algorithm 1 Converging algorithm
Require: 0 <6 <1
Require: 0 < 6<1
loop
Compute the approximated eigenpair on the mesh 7,
Mark the elements using the first marking strategy (Definition 4.1.1)
Mark any additional unmarked elements using the second marking strategy (Def-
inition 4.1.4)
Construct the mesh 7,4, refining the elements in 7, U 7,, using the bisection5
scheme in Figure 4-1.
end loop

Remark 4.1.5. From now on we fix the value of j because we restrict our analysis to
the true eigenpair (A\j,uj) and to the computed eigenpair on the mesh T, (Ajn,Ujn)
converging to (\j,u;) in the sense described in Theorem 2.2.10. So we can drop the
subscript j and we simply write (A, u) for the eigenpair of (1.3.7) and (\n,uy,) for the
eigenpair of (2.2.2).

Remark 4.1.6. In this chapter we suppose that X is a simple eigenvalue. This im-
plies that the corresponding eigenspace has dimension 1 and it is possible to find two
unit eigenvectors corresponding to A, namely u or —u. In other words, there is not
a unique eigenvector corresponding to A, but two. The same ambiguity holds also for
all the eigenvalues A\, computed in Algorithm 1, which approximate \. In fact, for
each n, both (\p,up) and (A, —uy) are acceptable eigenpairs for the discrete prob-
lem. To make the arguments in this chapter not ambiguous, we assume that ug is the
eigenfunction actually computed in the first iteration of Algorithm 1. Then we sup-
pose that the true eigenfunction u := U, where U is constructed as in the proof of
Theorem 8.1.4. Then, we set for each n > 0 the eigenfunction u, = w,, where wy

comes from Theorem 2.2.10. So, denoting by w), the eigenfunction actually computed
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in the n-th iteration of Algorithm 1, we have that either w, = w) or w, = —u). In

n
general not all the eigenfunctions u, appearing in the results below coincide with the
computed ones, i.e. uy, = u,, for some n it could be possible that u, = —u}. Anyway,
from a computational point of view the signs are not important, since the error estima-
tor used in Algorithm 1 is independent of the signs of the eigenfunctions. Moreover,
Algorithm 1 generates a sequence of eigenvalues A, converging to A and a sequence
of computed eigenfunctions u) converging into the true eigenspace of A. But, without
taking control of the signs of the computed eigenfunctions, what could happen is that
a subsequence of computed eigenfunctions would converge to the true eigenfunction u

and another subsequence would converge to the true eigenfunction —u.

In the 2D-case, at the n — th iteration of Algorithm 1, each element in the set T, U7,
is refined using the “bisection5” procedure (which has been used also in [42]), which
is illustrated in Figure 4-1c. An advantage of this technique is the creation of a new
node in the middle of each marked side in .73” and also a new node in the interior of

each marked element.

(a) (b) ()

Figure 4-1: The refinement procedure applied to an element of the mesh. In (a) the
element before the refinement, in (b) after the three sides as been refined and in (c)
after the bisection of one of the three new segments.

In the 3D-case, we use a suitable refinement that creates a new node on each marked
face in F,, and a node in the interior of each marked element. These requirements are
analogous to the requirements satisfied by bisection5 in 2D-case.

In [42] and [40] it has been shown (for linear source problems) that the reduction of
the error is trigged by the decay of the quantity osc on the sequence of constructed
meshes. This is only for problems like a(u,v) = (f,v)o,0, where f is a given function.

For the eigenvalue problem (2.2.2) the quantity A\,u, plays the role of data and in
principle we have to ensure that the value of osc for this quantity, is sufficiently small.
However \,u, may change if the mesh changes and so the proof of error reduction for
eigenvalue problems is not as simple as it is for linear source problems. This is the

essence of the theoretical problems solved in this paper.

Notation 4.1.7. We write A < B when A/B is bounded by a constant which may
depend on the functions A and B in (1.3.1) and (1.3.2), on Cey in Assumption 2.2.1
and Creg in (2.2.1). The notation A= B means A S B and A 2 B.
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All the constants depending on the spectrum, namely Cyqj in (3.1.25) and Cspec1 and
Cspec2 1 Theorem 2.2.10, are handled explicitly. Similarly all mesh size dependencies
are explicit. Note that all eigenvalues of (2.2.2) satisfy A\, 2 1, since N\, > A\ =

a(u,m) 2 luilfg 2 ulge 2 lulgse =1

4.1.1 Error Reduction

In this subsection we give the proof of error reduction for Algorithm 1. The proof
has been inspired by the corresponding theory for source problems in [42]. However
the nonlinearity of the eigenvalue problem introduces new complications, so there are
several lemmas before the main theorem (Theorem 4.1.15).

In Lemma 4.1.14 below, we are going to use the reliability result for general elliptic
eigenvalue problems, which is Theorem 3.3.5 modified as prescribed by Remark 3.4.7.
To improve the readability of this section, the reliability for general elliptic eigenvalue

problems used below is stated here:

Theorem 4.1.8 (Reliability for eigenfunctions). Let A be a simple eigenvalue of (1.3.7)
and let (An, uy) be computed eigenpairs, in the sense of Remark 2.2.4. Let also the true
eigenfunction u and the approzimated one u, be defined in the sense of Remark 4.1.6.

Then we have for e, = u — u, that

a(enaen)1/2 S nn + Gnp, (4.1.8)
where the quantity ny, is defined in 4.1.1 and where

(6n7 en)O,B,Q

1
Gn = -(A+ M\ .
2( ) a(en, en)l/?

(4.1.9)

Notation 4.1.9. In this chapter we denote by |||u |||o the norm a(u,u)/?.

The next theorem is a generalization to eigenvalue problems of the standard monotone
convergence property for linear symmetric elliptic PDEs, namely that if you enrich
the finite dimensional space, then the error is bound to decrease. This result fails to
hold for eigenvalue problems (even for symmetric elliptic partial differential operators),
because of the nonlinearity of such problems. The best that we can do is to show that
if the finite dimensional space is enriched, then the error will not increase very much.
This is the subject of Theorem 4.1.10.

Theorem 4.1.10. Let A be a simple eigenvalue of (1.3.7) and let (A, un) and (Am, tm,)
be computed eigenpairs, in the sense of Remark 2.2.4. Let also the true eigenfunction
u and the approximated ones u, and u,, be defined in the sense of Remark 4.1.6. Then

there exists a constant ¢ > 1 such that, for all m > n, the corresponding computed
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eigenpair (Am, ) satisfies:
[w—um lllo < ql[lu—un o - (4.1.10)
Proof. From Theorem 3.1.6, we obtain
[u = umllosa S Cadi(Hp™)* lllu — Qmu [l (4.1.11)

Since 7., is a refinement of 7,,, it follows that V,, C V,, and so the best approximation

property of @), ensures that
llu = @mu [l < [llv — Qnu [llo -
Hence from (4.1.11) and using the fact that H}** < H™ we have
lu = umllops < Cagj(Hy™)” [[[u — Quu [llo- (4.1.12)
Now, using Lemma 2.2.11 we get:
llw = wm I = A=Al + Alu—umll§5q - (4.1.13)

Then, combining (4.1.12) with (4.1.13) and using the minimum-maximum principle,

we obtain

IN

Il — v 13 A= Aml + ACG(H™)* [[lu — Qnu I

A= An| + ACTG(HE™)* (lu = Quu [ (4.1.14)

IN

Hence, using Corollary 2.2.12

M= B < flu—un B+ ACZG(HD™) lu— Quu 3. (4.1.15)

But since @, yields the best approximation in the energy norm, we have
Il —wm Iy < (14 ACo(HE™)*) fllu = un [II§ (4.1.16)

which is in the required form. O

The next lemma is similar to [42, Lemma 4.2] for the 2D-case. But we are going to

extend the result to the 3D-case, too.

Lemma 4.1.11. Let (A, uy) be an approximated eigenpair on the mesh 7T, and let F,
be as defined in Definition 4.1.1 and let P, be as defined in (4.1.4). For any f € F,

80



there exists a function ®¢ € V41 such that supp(®s) = Ay, and also

1/2
/A An B(Prun)®y — /fRF(un)Qf = |Hx )‘nBPnunH(Q),Af + HHf/ RF(un)Hg,fv
!
(4.1.17)

and
1/2
losllR, < [1Hn AnBPnunH?),AerHHf/ R (un)][§ - (4.1.18)

TH

(a) (b)

Figure 4-2: Two cases of refined couples of elements .

Proof. Figure 4-2 illustrates two possible configurations of the domain A¢ (in the 2D
case): in Figure 4-2a we have that both corners opposite to the common edge have been
bisected, while Figure 4-2b shows a different choice of bisected corners. The point x is
the node created on the shared edge f by the refinement while the points z; and x2 are
the nodes created in the interior of the refined elements 71 (f) and 72(f) respectively.
The two situations in Figure 4-2 do not exhaust all the possible configurations for
couples of adjacent refined elements. There could be other possible configurations
different from Figure 4-2b, in which the green refinements are applied to different
edges. However, the way in which the green-refinements split the elements is irrelevant
for the proof, since the only important thing is the existence of a new node on the
shared edge and two nodes in the interior of the elements.

In the 3D case we denote by 7i(f) and 72(f) the elements sharing the face f and,
similarly to the 2D case, we denote by x; the node created in the middle of the shared
face f while the points x1 and xo are the nodes created in the interior of the refined
elements 71 (f) and 7o (f) respectively. We have not included a picture of the refinement
for the 3D case, since it would be very difficult to draw.

We start proving (4.1.17). The proof of this result is not affected by the number of
dimensions of the domain, instead the proof of (4.1.18) slightly differs according to the
number of dimensions.

We then define
Dy = aspr + Prpr + Papa, (4.1.19)

where ¢ and ¢; are the nodal basis functions associated with the points xy and z; in
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Tn41, and ay, (3; are defined by

1/2
N H R (un) 3

if Rp(uyn) # 0,

ap = Jy B (n)s (4.1.20)
0 otherwise,
and
| Hn AnBPnunH?),n(f) Y f‘n'(f) AnBBuun if P 0
T AaBPotiy, 0; H Putinlzip 7.0
5 = 7i(f) (4.1.21)
0 otherwise,
fori=1,2.

Using the fact that supp(y;) = 7:(f), for ¢ = 1,2 we can easily see that the above

formulae imply

1/2
of [ Retudes = I RrI, (122

MBPyuy (apps + Brpr + Bowz) = | Ho MBPoung a,,  (4.1.23)
A

(these formulae remain true even if Rp(u,) or Poun|r, sy vanish). Hence

/ MBPoity @ j— / Rir(un)®; — / Mo Patin (0170 1+-Bri01+-Bosps)— / Ri(un)aso;
Ay f Ay ¥

and (4.1.17) follows immediately on using (4.1.22) and (4.1.23).
To prove (4.1.18) in the 2D case, we use (4.1.19) and the facts that [ps[1.a, $ 1 and

~

|901‘|1,Af < 1 to obtain
lesllR, S lagl+167 + |62/ (4.1.24)

Now, since Rp(uy) is constant on f and ff oy ~ Hy, we have

1/2
_ |Re(un)ll|H

lay| S
Hy

2
0, 1/2
LS IRe(wa)lHy ~ |H?Re(un)loy . (41.25)
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Also since P,uy, is constant on each 7;(f) and since fn(f) i ~ H‘i(f)’ we have

‘)‘nBPnun‘n(fﬂ ‘|Hn‘|(2)ﬂ(f) =+ |O‘f|H72-i(f)

H )
S |)\nBPnUn|n-(f)| H72-Z-(f) + log| ~ [ HpAnBPyun 0mi(f) T |y
This implies
< [1HaABPua |3 ?
il S [HeAn nunHo,Ti(f)‘f'|af|
S HABPun 3, )+ [ HY R (un) 3 5 (4.1.26)

and the proof is completed by combining (4.1.24) with (4.1.25) and (4.1.26).
To prove (4.1.18) in the 3D case, we use (4.1.19), and the facts that [pf[1a, S H}ﬂ

1/2
and "Pi‘LAf 5 Hn/(f

) to obtain
N@sll[Z, S Hilag® + Heyp)|B1] + Heyp)l B2l - (4.1.27)

Now, since Rp(u,) is constant on S and ff ¢ ~ H%, we have

1/2
R (un) | Hf (2
Hj

—1/2 1/2
lag| < < |Rp(un)|Hy ~ H; P IH*Rp(un) oy . (4.1.28)

Also since P,u,, is constant on each 7;(f) and since fn (f) Pi ™~ H 7‘931 (f)> We have

8 < ‘)‘nBPn“n‘n(fﬂ HHnH(Z),Ti(f) + |04f|H§i(f)

3
B
-1/2
S [AnBPauplz gl Hi(f) +lag| ~ Hn(]{) [ HpAnBPpun o (p) + oyl

This implies

6> < HT:(lf)||Hn>‘nBPnun||(2),n(f) + |0‘f|2
o | HuhaBPoun[§ gy + H I HP PR (un) [, (4.1.29)

Ti

A

and the proof is completed by combining (4.1.27) with (4.1.28) and (4.1.29).
O

Remark 4.1.12. The reason why in this chapter we present convergence results for
linear elements only, is that we have not found a way to extend Lemma 4.1.11 to higher

order elements yet. This could be the subject of further investigations.

In the next lemma we bound the local error estimator from above by the local difference
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of two discrete solutions coming from consecutive meshes, plus higher order terms. This
kind of result is called “discrete local efficiency” by many authors.

Recall that 7,1 is the refinement of 7, obtained by applying Algorithm 1.

Lemma 4.1.13. Let (A, u,) be an approzimate eigenpair on a mesh 7T, let T,41 be the
mesh obtained by one iteration of Algorithm 1 and let (Ap+1,Unt1) be an approzimate
eigenpair on a mesh T,11. Let the eigenfunctions u, u, and u,11 be defined in the

sense of Remark 4.1.5. Then, for any f € Fy, we have

77/%,71 S H|Un+1 — Un H|2Af + ”Hn()‘n-i-lun‘f'l o )\”Pnun)HaB’Af
(4.1.30)
+ 1B (e = Poun)[3 4,

where 1y, s defined in 4.1.5.

Proof. Since the function ®¢ defined in Lemma 4.1.11 is in V,,41 and supp(®s) = Ay,

we have

a(tns1 — Un, @p) = a(tupsr, ®r) — aluy, @y)
= )\n+1/ Bup1®r — a(un, Py). (4.1.31)
Ag

Now applying integration by parts to the last term on the right-hand side of (4.1.31),

we obtain
a(tns1 —un, ®r) = g1 Bupi 19y — /RF(un)tl)f. (4.1.32)
Ay f

Combining (4.1.32) with (4.1.17), we obtain

a(tng1 — up, @) — B(M1tns1 — AnPruyn) Py
Ay
= Z /AnBPnuntﬁf—/RF(un)@f
TEAf T f

1/2
= | Ho MBPaun|} o, + |H*Re(un)|3 ;. (4.1.33)

Rearranging (4.1.33), and then applying the triangle and Cauchy-Schwarz inequalities,

we obtain:
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1 H ABPyunl3 o, + I1H ' Rie(un) 3 5

< la(unt1 — un, g)| + B(Mg1tns1 — A Prupn)® s

Ay
< untr — unllla 1 ®fllla, + [ Ans1tnt1 — AnPrunllosa, [ ®fllos.a,
S (H’un-i-l - unmAf + [ Hn(An+1Unt1 — AnPnun)HO,B,A,f) H@f‘HAf )

(4.1.34)

where in the final step of (4.1.34) we made use of the Poincaré inequality

[®rllosa, S H I Prlia, ,

the coercivity |[®¢[1.a, S [l|®y[l[a, and also the shape-regularity of the meshes.
In view of (4.1.18), yields

1/2
| H ABPyunl3 o, + [1H ' Rie(un) 3 5

S s = unlllA, + 1 Hoor1tnsr = AaPoun) 5 5.4, - (4.1.35)
From the definition of 7, in (4.1.3), and the triangle inequality, we have

77]2”,71 S |Hx AnBPnun”(Q),Af
+ 1HY R (un) 13 5 + [ HnBAn (i, — Pawn)|3 a, - (4.1.36)

The required inequality (4.1.30) now follows from (4.1.35) and (4.1.36). O

In the main result of this section, Theorem 4.1.15 below, we achieve error reduction of
the form |||u —unt1|||o < af||u—uy|||q, for some o < 1. In the case of source problems

(see [42] ) this is approached by writing

= 13 = e = tnt1 + tnt1 — un |||
= |llw = wnsr ||B+ tnss — un |13 (4.1.37)

+ 2a(u — Upt1, Upt1 — Up).

and making use of the fact that the last term on the right-hand side vanishes due
to Galerkin orthogonality. However this approach is not available in the eigenvalue
problem context. Therefore a more technical approach is needed to bound the two
terms on the right-hand side of (4.1.37) from below. The main technical result is in

the following lemma. Recall the convention in Notation 4.1.7.
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Lemma 4.1.14. Under the same assumptions of Lemma 4.1.13 we have:

M —wallZ 2 62 [llu— uallly — osc(htin, T)? — L2 , (4.1.38)

where 0 is defined in the marking strateqy in Definition 4.1.1 and L, satisfies the
estimate:

Ly S C (H™)||lu—unlllo , (4.1.39)
where C' depends on 0, \,, Cspec; Cagj and q.

Proof. By Lemma 4.1.13 and Definition 4.1.1 we have

2,2 2
0 I < Zfe-ﬁn T]fan

N

unt1 — un 13 + | HoAng1tn1 — )\npnun)HaBﬂ

+ osc(Antin, Tn)? .
Hence, rearranging and making use of Theorem 4.1.8, we have

|[|wnt1 — Un‘”?) 2 6 77121 — [[Hn(An1Unt1 — AnPnun)”%,B,Q - OSC()‘num,];z)Q
>

02 ||lu — unl||ll — osc(Anun, Tn)* — 62 G2
—[[Hn (At 1Uns1 — A Paun) 5 5.0 - (4.1.40)
We now estimate the last two terms in (4.1.40) separately.

To estimate G,,, we use (4.1.9), combined with the Poincaré inequality (and the H?! -
ellipticity of a(-,-)) and then Theorem 3.1.6 to obtain

1 1
Gn S O+ A)lu—unllose S 5O+ M) Cagy (HR™)[[Ju = unlllo. (4.1.41)

To estimate the last term in (4.1.40), we first use the triangle inequality to obtain

HHn()\n—&-lun-i-l - /\nPnun)

0,B,Q2 < HHn(An—i—lun—s—l - /\nun)HO,B,Q + )\nosc(un, 7;1)
(4.1.42)
For the first term on the right-hand side of (4.1.42), we have

| Hn (A1 tns1 — )\nun)HO,B,Q < HSaX(H)‘u - )\n+1un+1||0,B,Q + [[Au — )‘nunHO,B,ﬂ)'
(4.1.43)
From Corollary 2.2.12 we have that

A= Ang1] < [llu—ungallf
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then using this result and Theorem 3.1.6, we obtain

IN

[ AU — Anr1tntllos.0 A= Antilllulloso + Antillu —untillose

N

Il = wnrallld

T+ Mt Cogg (™) lu = wplllo . (4.1.44)

Using Theorem 3.1.4 and using the fact that A,+1 < A, from the minimum-maximum

principle we have

IV~ At lose S (Copeer + AnCaa) () [lu — wniilllo . (4.1.45)

Finally, using Theorem 4.1.10 we obtain

[Au = Anpruntillose S a(Cspecz + AnCadj) (Hy™)%|[[u — unl|a - (4.1.46)

An identical argument shows
[Au = Antnllose S (Copeca + AnCaaj) (H™)|[[u — unllo - (4.1.47)
Combining (4.1.46) and (4.1.47) with (4.1.43), we obtain

[ Hp(Ant1unt1 — Anun)lloe < (14 ¢)(Cspecz + Ancadj)(H;:laX)s-i_lHW — un||[q -
(4.1.48)
Now combining (4.1.40) with (4.1.48), (4.1.41) and (4.1.42) we obtain the result.
O

The next theorem contains the main result of this section. It shows that provided we
start with a “fine enough” mesh 7, the mesh adaptivity algorithm will reduce the error

in the energy norm.

Theorem 4.1.15 (Error reduction). For each 6 € (0,1), there exists a sufficiently fine
mesh threshold H** and constants p > 0 (all of which may depend on 6 and on the
eigenvalue A) and o € (0, 1), with the following property. For any e > 0 the inequality

osc(Antn, 7,) < pe, (4.1.49)
implies either |||u — up|||o < € or
llv = unpillle < alllu—wunllla

where the constant o may depend also on the parameter 6 and on the considered eigen-

value.
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Proof. In view of the equation (4.1.37) and remembering that u,4+1 — u, € V41 we

have

Mo = 3= = et 1 = Hletnss — e 12 + 2000 = s, s — )

= [[[ttns1 — un I3 + 2(Au — Apg1tng1, Unt1 — Un)o,B0 -

Now using on the second term on the right hand side the Cauchy-Schwarz and the

1
4CEL

Young inequality 2ab < a? + 4C%Lb%, where Cpr is the constant of the Poincaré

inequality, we get

llw = wn &= N = wner MG > s = un I

= 2[[Au = Appruntallosolluntt — unllos0
1
2 2
> lunt1 — un lllg — @HunJrl - Un”O,B,Q
- 4C%FHAU__An+1un+1HaBQ

3
> 7 Mnsr = un ([ = 4CRe[ A = A1t [l s

(4.1.50)

Hence

3
M= unallley < Ml = walllg = Flllwnss = wnlll + 4CExIAw = Angrunsa G 5.0 -

Applying Lemma 4.1.14 we obtain

3 N
=il < (1= 362+ €2 (2 )l - I

+Mﬁﬂm—&wmwﬂ@@+wmemﬂf

Then making use of (4.1.46) we have
Il =l < Ba lllu—unllly + osc(Anun, Tn)*. (4.1.51)
with
B = [1— 292 - ((C)2C266% (Cupeen + AnCagj)? + O2) (HI)2| | (4.1.52)

where C” is the constant hidden in (4.1.46).

Note that H;'®* can be chosen sufficiently small so that 3, < 3 <1 for all m > n.
Consider now the consequences of the inequality (4.1.49). If |||u — uy|||q > & then
(4.1.51) implies

I =]l < B+ p2) [llu—unll}, -
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Now choose p small enough so that
a=0B+p)?<1, (4.1.53)
to complete the proof. O

4.1.2 Proof of convergence

The main result of this chapter is Theorem 4.1.17 below which proves convergence of the
adaptive method and also demonstrates the decay of the quantity osc on the sequence
of approximate eigenfunctions. Before proving the convergence result we need a final

lemma.

Lemma 4.1.16. There exists a constant & € (0,1) such that
0sc(tni1, Tnt1) < @osclun, Tp) + (1+q)(HP*™)? |[ju — uy, || (4.1.54)

Proof. First recall that one of the key results in [42, Lemma 3.8] is the proof that the
value of osc of any fixed function v € H}(Q) is reduced by applying one refinement

based on Marking Strategy 2 (Definition 4.1.4). Thus we have (in view of Algorithm

1):
08C(Un, Tnt1) < & osc(un, Tn), (4.1.55)

where 0 < & < 1 is independent of w,. Thus, a simple application of the triangle

inequality combined with (4.1.55) yields

0sC(tuny1, Tny1) < 08C(un, Tny1) + 08C(Unt1 — Un, Tng1)

< aosc(up, Ty) + osc(tupt1 — Un, Tnt1) (4.1.56)

A further application of the triangle inequality and then (4.1.6) yields

05¢(Unt1 — Un, Tny1) < osc(u — upgt1, Tng1) + osc(u — un, Tny1)

S EPED? (= ungallle + [[lu — unllle)  (4.1.57)

and then combining (4.1.56) and (4.1.57) and applying Theorem 4.1.10 completes the
proof. O

Theorem 4.1.17 (Convergence). Let (A, u) be a simple eigenvalue of the continuous
problem, then provided that the initial mesh Ty is chosen in such a way that HJ"™
is small enough, there exists a constant p € (0,1) such that the recursive application

of Algorithm 1 to solve problem (1.3.7) yields a convergent sequence of approximate
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etgenvectors, with the properties:
[lu—un [lo < Cogp™, (4.1.58)

and
An 0sc(up, Tp) < Cip", (4.1.59)

where Cy and C are constants and q is the constant defined in Theorem 4.1.10.

Remark 4.1.18. The initial mesh convergence threshold and the constants C1 and Cs

may depend on 0, 0 and \.

Proof. The proof of this theorem is by induction and the induction step contains an
application of Theorem 4.1.15. In order to ensure the reduction of the error, we have
to assume that the starting mesh 7 is fine enough and that p, which is defined in
Theorem 4.1.15, is small enough such that for the chosen value of 8, the quantity « in
(4.1.53) satisfies o < 1.

Then with & as in Lemma 4.1.16, we set
max{a,a} < p < 1.
We also set
C; = osc(Mouo,Zo) and Cp = max{u 'p~'C1, |||u— uoll|a}-
First note that by the definition of Cjy and Theorem 4.1.10,
[lu = uo [llo < Co < Cog,

since ¢ > 1. Combined with the definition of C{, it proves the result for n = 0.
Now, suppose that for some n > 0 the inequalities (4.1.58) and (4.1.59) hold.

Then let us consider the outcomes, depending on whether the inequality
v — un [[lo < Cop™™, (4.1.60)

holds or not. If (4.1.60) holds then we can apply Theorem 4.1.10 to conclude that

llw = uni1 llle < q lllu = un lo < qCop™*,

which proves (4.1.58) for n + 1.
On the other hand, if (4.1.60) does not hold then, by definition of Cj,

v —unlllo > Cop™™t > p=tCip™. (4.1.61)
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Also, since we have assumed (4.1.59) for n, we have
An 05C(tn, Tpy) < pe  with e := p~1C1p" . (4.1.62)
Then (4.1.61) and (4.1.62) combined with Theorem 4.1.15 yields

v = untallle < alllu —unllla

and so using the inductive hypothesis (4.1.58) combined with the definition of p, we

have

llu = ups1llle < aCogp™ < qCop™*,

which again proves (4.1.58) for n + 1.
To conclude the proof, we have to show that also (4.1.59) holds for n + 1. Using

Lemma 4.1.16 and the inductive hypothesis, we have

Ang1 08¢(tni1, Top1) < aC1p™ + (14 q)(HY™)?A\uCogp™
< (aC1 + (14 q)(HF™)* X Coq)p™-
(4.1.63)

Now, (recalling that & < p), in addition to the condition already imposed on H}"** we

can further require that
aCi + (1 + q)(Hg™)?|MolCog < pCi.

This ensures that
An 0sc(tn1, Tny1) < Crp™,

thus concluding the proof. O

Corollary 4.1.19 (Convergence). Provided the initial mesh Ty is chosen so that Hi**
is small enough, there exists a constant p € (0,1) such that the recursive application
of Algorithm 1 to solve problem (1.3.7) yields a convergent sequence of approximate

etgenvalues, with the property:
A=\ < Cag*p™. (4.1.64)

Proof. The proof is a straightforward application of Corollary 2.2.12 to (4.1.58). [

91



4.2 Convergent AFEM for PCF eigenvalue problems

The outline of this section is as follows. In Subsection 4.2.2 the convergence result
for problem (1.3.9), which is the main result of this section, is presented. Meanwhile,
in Subsection 4.2.1, we prove that mesh refining ensures error reduction (up to oscil-
lation of the computed eigenfunction). Moreover, in Subsection 4.2.3, we present the

convergence result for problem (1.3.8).

Assumption 4.2.1. In Theorem 2.1.12 in Chapter 2 we proved that a, s(-, ) is coercive
form any S > 0. But, in order to simplify the arguments below, we are going to assume
in this section that S > @b~ ' maxzcx |R|?. We would like to remark that all the results

below holds also without this assumption, but in such case the proof is more complicated.

We are going to use the same algorithm, Algorithm 1, which has been already used in
the previous section. So, we are again going to use the error estimator n,, defined in
4.1.1, and the quantity osc to drive the adaptivity. We recall from Chapter 3 that for

PCF problems the error estimator 7, is defined as:

1/2
- { S B2 Riun G + Y HfHRFwn)n%,f} |

T€T, fEFn

where
Ri(up,Cp)(x) := ((V +iRk) - A(V + iR)u, + CnBun) (), with z € int(r), 7€ T,

and
Rp(up)(z) == [fiy - A(V + i/‘{)un]f(a:), with x € int(f), f e Fn.

Definition 4.2.2. We define n;, as:

1 1/2
U I Hr Ri(un, Gn — NBa, + 1H*Re(u)3; (4.2.1)
where we denoted by Ay the union of the two elements T1(f) and 12(f) sharing f.

Since we are going to reuse Algorithm 1, we invite the reader to refer to the definitions
of the two marking strategies contained in Section 4.1. The only remark that we would
like to make about the marking strategies is that in the PCF context, (4.1.6) becomes

osc(v, Tp) < (HD™)%q, g(v,0)/2 | forall ve HLQ) . (4.2.2)

~

To simplify the notation in this section, we are going to embrace the same notation used
in Section 4.1. So, from now on we fix the value of j because we restrict our analysis to

the true eigenpair (;,u;) and to the computed eigenpair on the mesh 7y, ((jn,ujn). So
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we can drop the subscript j and we simply write (¢, u) for the eigenpair of (1.3.9) and

(Cn, up) for the eigenpair of (2.2.49). Moreover, we introduce the following notations:

Notation 4.2.3. We write A < B when A/B is bounded by a constant which may
depend on the functions A and B in (1.3.1) and (1.3.2), on S in (1.3.9), on CECY in
Assumption 2.2.20 and Cheg in (2.2.1). The notation A = B means A S B and A 2, B.

All the constants depending on the spectrum, namely CYCY in (3.1.43) and CYCY, and

adj specl
PCF
C’spec2

are explicit. Note that all eigenvalues of (1.8.9) satisfy (, 2 1, since ¢, > (1 =

ax,s(ur,un) 2wl g 2 lullg go =1-

in Theorem 2.2.24, are handled explicitly. Similarly all mesh size dependencies

Notation 4.2.4. In this section we denote by |||u |||x.5.0 the norm a, s(u,u)"/?, which
is related to the problem (1.3.9). Moreover, we are going to apply the same notation
for Hy, explained in Notation 4.1.2.

Remark 4.2.5. We assume in this chapter that ( is a simple eigenvalue. This implies
that the corresponding eigenspace has dimension 1 and that it is possible to find two
unit etgenvectors corresponding to ¢, namely u or —u. In other words, there is not a
unique eigenvector corresponding to C, but two. The same is true for all the eigenvalues
Cn computed in Algorithm 1, which approzimate (. In fact, for each n, both (Cp,un)
and ((n, —uy) are acceptable eigenpairs for the discrete problem. Similarly to what we
have done in Remark 4.1.6 for generic elliptic eigenvalue problems, we assume that ug
is the eigenfunction actually computed in the first iteration of Algorithm 1, then we set
u:= U, where U is constructed as in the proof of Theorem 3.1.8. Then, we set for each

n > 0 the eigenfunction uy, := wy,, where wy, comes from Theorem 2.2.24.

The next theorem extends the result of Theorem 4.1.10 to the PCF case. The proof of

this theorem follows by the same arguments used in the proof of Theorem 4.1.10.

Theorem 4.2.6. Let ¢ be a simple eigenvalue of (1.3.9) and let ((p,urn) and (Cm, tm)
be computed eigenpairs, in the sense of Remark 2.2.23. Let also the true eigenfunction
u and the approximated ones u, and u,, be defined in the sense of Remark 4.2.5. Then
there ezists a constant ¢g¥°Y > 1 such that, for all m > n, the corresponding computed

eigenpair (Cm, um) satisfies:

k50 < ¢ lu—un lnso - (4.2.3)

Il = ||

4.2.1 Error Reduction

In this section we give the proof of error reduction for Algorithm 1 for problem (1.3.9).
The proof has been inspired by the corresponding theory for source problems in [42].
However the nonlinearity of the eigenvalue problem introduces new complications and

there are several lemmas before the main theorem (Theorem 4.2.11).
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The first lemma is similar to Lemma 4.1.11, but in this case we are going to treat only
the 2D case, since in this work we analyse only PCF problems, which are in the end

2D problems.

Lemma 4.2.7. Let F,, be as defined in Definition 4.1.1 and let P, be as defined in
(4.1.4). For any f € F, there exists a function @y € Vi1 such that supp(®y) = Ay,
where Ay is the union of the two elements T(f) and T2(f) sharing f, and also

= = 1/2
PR (ttn, Gu—$) 85— /f Rp(un)®; = |Hy PuRi(un, Gu—S) |3 o, +IHY *Ri(wn) I3,
(4.2.4)

Ag

and
1/2

sll3, < (14 H) (1o PuRi(un, G = S)Ea, + 1H*Re(un)Z) - (4.25)

Remark 4.2.8. The function P,Ry(upn,(, —S) in Lemma 4.2.7 is the projection of
the elementwise linear functional Ri(uy,(, — S) on the set of elementwise constant

functions. Using the linearity of the projection operator P, we have:

PyRi(un, G — S) = Po((V+iR) - AV + iR)un, + (¢ — S)Buy)

=V - Aiku, + ik -AVu, —K-ARPyu, + (¢, — S)BPuy,,

the reason why the term V - AVu,, disappeared is because we are using linear elements,
instead, the reason why the operator P, does not appear in all terms is because these

terms are already elementwise constant.

Proof. We invite the reader to refer to Figure 4-2 in Section 4.1, which illustrates
possible configuration for Ay. The point xf is the node created by the red-refinement
in the middle of the shared edge f while the points 1 and xo are the nodes created in
the interior of the refined elements 71 (f) and 72(f) respectively.

The two situations in Figure 4-2 do not exhaust all the possible configurations for
couples of adjacent refined elements. There could be other possible configurations
different from Figure 4-2b, in which the green-refinements are applied to different edges.
However, the way in which the green-refinements split the elements is irrelevant for the
proof, since the only important thing is the existence of an new node on the shared
edge and two nodes in the interior of the elements.

We denote by 7i(f) and 72(f) the elements sharing the edge f and, we denote by xf
the node created in the middle of the shared edge f while the points x1 and z2 are the
nodes created in the interior of the refined elements 71(f) and m(f) respectively.

We start proving (4.2.4). We then define

D= asps + Piip1 + Paro, (4.2.6)
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where ¢ and ¢; are the nodal basis functions associated with the points xy and z; on

Tn41, and ay, B; are defined by

1/2
N H P Rie(un) 3

if RF(un) 7é 0,

Rp(uy)or
0 otherwise,

and

| Hn PnRI(unaCn_S)HQT. —ay | PoRi(un, G — S) P7

0.1ilf) d fl(f) — ! if PnRI(una Cn)|7'l(f) # 0,

E: fTi(f) PnRI(Uan_S) 2

0 otherwise,

(4.2.8)

fori=1,2.

Using the fact that supp(¢;) = 7(f), for i = 1,2 we can easily see that the above

formulae imply

— J— 1/2
w7 [ Retnzr = N Ry (129)

/A PuRi(un,Go — S)(apos + Bio1 + Papa) = |HuPuRi(un, G — )3 £4-2-10)
;

(and that these formulae remain true even if Rp(un) or PuRr(un,(n)lr,(r) vanish).

Hence

fAanRI(uan_S)(I)if_ffRF(un)(I)if - fAanRI(Uan_S)(O‘f@f"i_ﬁl()@l +ﬂ2902)

— [ Rr(un)as oy

and (4.2.4) follows immediately on using (4.2.9) and (4.2.10).
To prove (4.2.5), we use (4.2.6), and the facts that [pr[1.a, S 1, [wil1a, ST, lerloa, S
Hy, |pilo.a; S Hr(p) and the shape regularity of the mesh to obtain

leslllRsa, S (L+HF) (lagl? + |61 +162f?) - (4.2.11)
Now, since Rp(uy) is constant on f and ff @y ~ Hy, we have

2

R (wn) | H 22 12
L 200 < \Rp(un)[Hy ~ |H*Rp(un)lloy - (4.2.12)

Hy

loay| S
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Also since P, Rj(un, (,) is constant on each 7;(f) and since fn(f) i ~ Hfi(f), we have

8 < | PaRr(tn, Gn — S)‘n(f)| HHanﬂ(f) + |04f|H72-i(f)

H 1)
5 |PnR1(un,Cn — S)|n(f)| H,,Q.Z(f) + |Oéf| ~ HHnPnRI(Uan - S)HO,Ti(f) + |O‘f’

This implies

1G> S I HoPaRi(tn, 6o = )G 1y + sl
1/2
S Hn PR (un,Go = S)IR o+ 1HRe(un) 35, (4.213)

and the proof is completed by combining (4.2.11) with (4.2.12) and (4.2.13).
O

In the next lemma we bound the local error estimator from above by the local difference
of two discrete solutions coming from consecutive meshes, plus higher order terms. This
kind of result is called “discrete local efficiency” by many authors.

Recall that 7,41 is the refinement of 7, obtained by applying Algorithm 1.

Lemma 4.2.9. For any f € F,, we have

o SO+ HD) (Nns = |54,
+ [[Hp (Cnt1unt1 — gnpnun)H(ZLB,Af + 5% Hi(un — Pn“n)Hg,B,Af (4.2.14)

+((Gr = )% + 8) | Hu Bl — Paun) 3.5, ) -

Proof. Since the function ®; defined in Lemma 4.2.7 is in V;,41 and supp(®s) = Ay,

we have

QH,S(un—i—l — Unp, (I)f) = aH,S(un—‘rla (I)f) - an,S(una (IDf)

= Cn_H/ Bup+1®r — an,s(tun, @y). (4.2.15)
Ag

Now applying integration by parts to the last term on the right-hand side of (4.2.15),

we obtain
an,S(un—‘rl — Unp, (I)f) = Cn—i—l / Bun—&—lq)if
Ay
. /((v +iR) - A(Y 4+ iR)up — SBun) B — / R ()35 .

TGAJ: T f
(4.2.16)

96



Combining (4.2.16) with (4.2.4) and using Remark 4.2.8, we obtain

U, (Un+1 — Un, (I)f) - A B(Cnt1tnt1 — CnPnUn)(I)f
f
+S B(un, — Pyuy)® ¢ + / R AR(up — Ppug)® g
Ay Ay
= Z PnRI(uern _S)(I)f_/RF(Un)(Df
TGAf o f

= | Ha PaRi(un, o = S)[3.a, + I} Re(un)llf 5. (4:2.17)
Rearranging (4.2.17) and then applying the triangle inequality, we obtain:
| Hy PRt Go = S, + 1 * R ()3
< aw,s(Un+1 — un, (I)f)’ + ‘ / B(Crt1tnt1 — CnPnUn)(I)f‘
Ay

+ ‘5’ B(uy, — Pnun)CI)f’ +

/ R AR(up — Pnun)@f‘ (4.2.18)
Ay Ay

The last term of (4.2.18) can be absorbed in the term S fAf B(un — Pouy)® , since we

have assumed in Assumption 4.2.1 that |g|> < S, so

/ R AR(un — Paun)®; <8 | Blun — Pyun)®y,
Ay Ay

in view of this fact, (4.2.18) becomes:
1/2
| H PaRy (s Go — S)IIR o, + 1 H > R (un) |13
S ’aﬁ,S(unJrl — Un, @f)‘ + ‘ / B(Cri1tnt1 — CnPnUn)qTf
Af
+s

B(u, — Pnun)@f’ : (4.2.19)
A

Then applying the Cauchy-Schwarz inequalities to (4.2.19), we get:

1/2
| Hr PaRy(n, Go — S)IR a, + | H > R ()13

S untr — un”|H,S:Af‘|’(pr|HyS,Af + [[Cn1tnt1 — gnPnunHO,B,AfHCI)fHO,BAf
+ Sluy — PnunHOﬁ,AfH(I)f

0.8.A;
5 (H’UnJrl - un|”f€,S,Af + HHn(Cn+1un+1 - Cnpnun)HO,B,Af

+ S| Haun — Pan)llo.s.a, ) 112y

’SAf (4.2.20)
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where in the final step of (4.2.20) we made use of the Poincaré inequality

[®Prllosa, S HfPrlia,,

the coercivity of the bilinear form [®s[y A, < [||®f|/|x,5,4, and also the shape-regularity
of the meshes.
In view of (4.2.5), yields
1/2
|Ho PR un, o = S, + 1Hy R (un) 8 5
S (U4 B3 (wnsr = wnll 5.6, + [ Ha(Gurrtnss = GuPattn)

+ 5% Hy(un — Pnun)\lﬁ,B,Af) : (4.2.21)

2
0,B,A;

From the definition of 7y, in (4.2.1), and the triangle inequality, we have

77J2f,n S Hn PaRi(un, G — S)H%,Af
+ H2Rp(un) |3 5 + || Ha (G — S)B — &+ AR) (u, — Pnun)Hg’Af(,ZLZQZ)

where we have used Rj(up,(n) = PoRr(un, Gy —S) + ((Cn - S)B—-R- AE;’) (up, — Ppuy).

In order to simplify the result, we can use again the fact |5]? < S as follows:

N R 2
| Hn ((¢n — S)B — R - AR) (un, — Pn“")Ho,Af
< [[Hn(Cn = 9)B(un — Pnun)”(%,Af + || HnR - AR (upn — Pnun)”(%,Af (4.2.23)
S Hn (G — S)B(un — Pnun)”(%,Af + | HnSB(upn — Pnun)”%),Af :

The required inequality (4.2.14) now follows from (4.2.21), (4.2.22) and (4.2.23). O

In the main result of this section, Theorem 4.2.11 below, we achieve error reduction of
the form |||u — upt1|||r,50 < afllu — uy|||x,s0 for some o < 1. In the case of source

problems (see [42] ) this is approached by writing

llu—tn 12 5.0 = Ilu = tng1 + i1 — un 250
2 50+ llunt1 —un 250 (4.2.24)

+ 20//{,5(“ — Un+1, Un+1 — un)

S p——

and making use of the fact that the last term on the right-hand side vanishes due
to Galerkin orthogonality. However this approach is not available in the eigenvalue
problem context. Therefore a more technical approach is needed to bound the two
terms on the right-hand side of (4.2.24) from below. The main technical result is in

the following lemma. Recall the convention in Notation 4.2.3.
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Lemma 4.2.10.

max -1
ltnsr —unlllf 50 2 0% (14 (HP)?) llu—ualll} 50
(4.2.25)
—((Cn —8)2b+ S%(1+0b) + C%)osc(un,’l;l)Q —- L2,

where 0 is defined in the marking strateqy in Definition 4.1.1 and L, satisfies the

estimate:
Ly S C (HP™)||[u—unlllxs0 , (4.2.26)
where C depends on 0, Cns C;SCFQ, Cfd?F and ¢PCF.

Proof. By Lemma 4.2.9 and Definition 4.1.1 we have
00y < Yges, Min

< (1+ (Hglaxp)( tnt1 = tn 12 5.0+ | Hn(Crartingr — CaPrtn) I 5.0
+ ((¢n — 9)%b+ 52(1 +5))osc(un,%)2>

Hence, rearranging and making use of Theorem 3.3.5, we have

max -1
[|un+1 — UTLHE,S,Q 2 s (1 + (Hy )2) 771% — | Hn (Cnt1tn+1 — CnPnun)”g,B,Q
—((¢n — 9)%b + S*(1 + b)) osc(up, 7p)?
max -1
Z 07 (14 (Hy™)?) Il = unlllZ 50
—((Cn — 5)252 + 52(1 + B))osc(un, %)2 —0? (1 + (H;f“"X)Q)_ICJTZZ
_HHH(Cn—&-lun—i-l - Cnpnun)Hg,B,Q . (4227)

We now estimate the last two terms in (4.2.27) separately.
To estimate G, we use (3.3.11), combined with the H' - ellipticity of a, s(-,-) and
then Theorem 3.1.9 to obtain

(¢ + o) Cay" (H™)[[Ju = un|llu,s.0-  (4.2.28)

(NN

1
Gn S §(C+Cn)”u_un”0ﬁ,9 N

To estimate the last term in (4.2.27), we first use the triangle inequality to obtain

HHn(Cn—&-lun+1 - Cnpnun)HO,B,Q < HHn(Cn—&-lun—i-l - Cnun)HO,B,Q + CnOSC<'UJm,In)-

(4.2.29)
For the first term on the right-hand side of (4.2.29), we have
”Hn(CnJrlunJrl - Cnun)HO,B,Q < Hyrlnax(”é-u - <n+1un+1HO,B,Q + HCU - Cnun O,B,Q)-
(4.2.30)
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From Corollary 2.2.27 we have that

1€ = Gaortl < llu—wnirllZ g0,

then using this result and Theorem 3.1.9, we obtain

[Cu = Cnrrunsilloge < |¢C—Curilllullose + Catillu — unsilloso

< |Hu_un+1|Hi,S,Q
G CESF (P — s - (4231)

Using Theorem 3.1.9 again, the minimum-maximum principle and then Theorem 4.2.6,

this implies

I¢u = Gortnsillose S (Copeer + Cat1Cagy Y HR™)*|[Ju = tnia ||l 5.0
< "N (Cipeca + GGty ) (HR™)|Ju = up||,5,644-2.32)
An identical argument shows
16w = Gaunllos.e S (Cipeez + nCady ) (HR™)°[[Ju = wn|llx,5.0 - (4.2.33)

Combining (4.2.32) and (4.2.33) with (4.2.30), we obtain

1 (Gotrtns = Grtn) losie S (1407 (Copeca+6nCags ) (HR™)* | Ju—tnl[lns.0 -
(4.2.34)

Now combining (4.2.27) with (4.2.34), (4.2.28) and (4.2.29) we obtain the result.
O

The next theorem contains the main result of this section. It shows that provided that
we start with a ”fine enough” mesh 7,, the mesh adaptivity algorithm will reduce the

error in the energy norm.

Theorem 4.2.11 (Error reduction). For each 6 € (0,1), exists a sufficiently fine
mesh threshold H™* and constants p > 0 (both of them may depend on 6 and on the
eigenvalue A) and a € (0, 1), with the following property. For any e > 0 the inequality

((Go — 9)?b+ S*(1 +b) + ¢2) osc(un, Tp) < pe, (4.2.35)
implies either |||u — up|||x,5.0 <€ or
v —unpilllese < alllu—unlllksa

where the constant a may depend also on the parameter 0 and on A.
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Proof. In view of the equation (4.2.24) and remembering that u,+1 — u, € V41 we

have

llw = wn 112, 50— llu = wns1 [I2 50

In the next step we will use the following inequality, which easily comes from Theo-
rem 2.1.12:

b
ullg .0 < _PCF lull2 50, forallue HL(SQ),

a,S

in order to simplify the notation, we will denote the constant Cp g := CP%.
a,S

Now using on the second term on the right hand side of (4.2.36) the Cauchy-Schwarz

and the Young inequality 2ab < 4013 Sa2 + 40375172, where Cp g is the constant of the

Poincaré inequality, we get

[lu — up H|i,s,§z— llw — unt1 H\i,s,g > |[|unt1 — un H\i,s,g

— 2||¢u = Cag1Untllo,B,0llUnt1 — unlloB,0

2 1 2
> |[Juns1 — un |50 — @Hunﬂ —unllo.B.0

— 4CB.s||Cu — Car1uns1llg 5.0

3
Z 7 ltns1 = un 12 5.0 — 4CB.5[ICU — Cui1tns

(4.2.37)

Hence

3
llu=wnilllse < Mu=unll[Zs0= 7w —unll[ 50+4Css1Cu—Cniruntallgsa -

Applying Lemma 4.2.10 we obtain

3 max -1 A m.
e = tnsallZ g0 < (1—492 (1+ (i) 7 4 2 <Hna">%)u|u—unui,s,ﬂ

+ 4Cp 5||Cu — Cn+1un+1|’(2),3,9
+ ((Cn = 8)%b + S2(1+ ) + ¢2)osc(un, Tn)?

Then making use of (4.2.32) we have

I||w— Um—l“‘i,s,g < B lllu— Un’”z,S,Q
+ (G — )%+ S*(1+b) + 2)osc(un, Tn)? . (4.2.38)
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[[wn+1 — un H‘i,S@ + 20,5 (U — Un+1, Unt1 — Un)

(4.2.36)

tnt1 — tn 112,50 + 2(Ct = Cri1Ung1, tn1 — tn)o,B,0 -

2
0,8,Q2°



with

B |1 307 (L (™) (C)PCos(a P (Chh + GuOBET 4 €2) ey
(4.2.39)

where C” is the constant hidden in (4.2.32).

Note that H;'®* can be chosen sufficiently small so that 3, < 8 < 1 for all m > n.

Consider now the consequences of the inequality (4.2.35). If |||u — up|||x,50 > € then
(4.2.38) implies

Nu—unialll2 s < B+ 12 lllu—unlll? g0 -

Now choose p small enough so that
a:=(B+p?)? <1 (4.2.40)
to complete the proof. ]

4.2.2 Proof of convergence

The main result of this section is Theorem 4.2.13 below which proves convergence of the
adaptive method and also demonstrates the decay of the quantity osc on the sequence

of approximate eigenfunctions. Before proving this result we need a final lemma.

Lemma 4.2.12. There exists a constant & € (0,1) such that
05¢(tn1, Tnr1) < @osc(un,Tn) + (14 ¢ ) (HP™)? |[|u — up ||lxs0.  (4.2.41)

Proof. First recall that one of the key results in [42] is the proof that the value of osc of
any fixed function v € H}(€2) is reduced by applying one refinement based on Marking
Strategy 2 (Definition 4.1.4). Similarly, it is possible to prove the same result for any
fixed function v € H}(£). Thus we have (in view of Algorithm 1):

0sc(Un, Tn+1) < & osc(un,Tn), (4.2.42)

where 0 < & < 1 is independent of w,. Thus, a simple application of the triangle

inequality combined with (4.2.42) yields

osc(Uny1, Tny1) < osc(un, Tng1) + osc(Uny1 — Un, Tny1)

< aosc(un, Tp) + osc(tunt1 — Un, Tnt1) (4.2.43)
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A further application of the triangle inequality and then (4.2.2) yields

IN

05¢(Unt1 — Un, Tny1) osc(u — Uny1, Tny1) + osc(u — tpn, Tpyt)
S HE (e = unga|llss.0

+lw = unl|lx,5.0) (4.2.44)

and then combining (4.2.43) and (4.2.44) and applying Theorem 4.2.6 completes the
proof. O

Theorem 4.2.13 (Convergence). Provided the initial mesh Ty is chosen so that Hy***
is small enough, there exists a constant p € (0,1) such that the recursive application
of Algorithm 1 to solve problem (1.3.9) yields a convergent sequence of approrimate

etgenvectors, with the property:
llu = up flss0 < Cod"p", (4.2.45)

and
((Go — 9)?b+ S*(1 +b) + ¢2) osc(un, Tp) < Cip", (4.2.46)

where Cy and Cy are constants and g~ °F is the constant defined in Theorem 4.2.6.

Remark 4.2.14. The initial mesh convergence threshold and the constants C1 and Cs
may depend on 0, 6 and C.

Proof. The proof of this theorem is by induction and the induction step contains an
application of Theorem 4.2.11. In order to ensure the reduction of the error, we have
to assume that the starting mesh 7 is fine enough and g in Theorem 4.2.11 is small
enough such that for the chosen value of 0, the quantity « in (4.2.40) satisfies o < 1.

Then with & as in Lemma 4.2.12, we set
max{a,a} < p < 1.
We also set
Ci = ((CO—S)QE—FSQ(1+5)+§g)osc(uo,’]E)) and Cp = max{u 'p~1Cy, [|Ju—uol||x,5,.0}-

First note that by the definition of Cjy and Theorem 4.2.6,

Il — g [lle,s5,0 < Co < Cog"F,

since ¢ > 1. Combined with the definition of C1, it proves the result for n = 0.
Now, suppose that for some n > 0 the inequalities (4.2.45) and (4.2.46) hold.
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Then let us consider the outcomes, depending on whether the inequality
Il = .50 < Cop"*, (4.2.47)
holds or not. If (4.2.47) holds then we can apply Theorem 4.2.6 to conclude that

Nt = tnt1 lese < ¢7CF lu—un lllesa < ¢FCFCop™t,

which proves (4.2.45) for n + 1.
On the other hand, if (4.2.47) does not hold then, by definition of Cj,

lw— unllese > Cop™™ = p~'Cip™ (4.2.48)
Also, since we have assumed (4.2.46) for n, we have
((Co — 9)?b+ S*(1+b) + ¢2) osc(upn, Tp,) < pe  with e:=p 'Cip" .  (4.2.49)
Then (4.2.48) and (4.2.49) combined with Theorem 4.2.11 yields

[lu = uns1]llrs0 < afllu —unl|lks0

and so using the inductive hypothesis (4.2.45) combined with the definition of p, we

have

[t = tnt1|l|eso < aCog"Fp™ < ¢PCFCopmt,

which again proves (4.2.45) for n + 1.
To conclude the proof, we have to show that also (4.2.46) holds for n + 1. Using
Lemma 4.2.12, the minimum-maximum principle, which we applied to (,4+1 and to

(Crnt1 — S) = Apt1, and the inductive hypothesis, we have

((Gas1 — S)?b+ S*(L+b) + (21q) osc(unt1, Tns1)
< aCp" + (1+ ¢")HY™) ((Gn = )70 + S*(1+ ) + (7) Cog" " p"
< (G0 + (1+ ) HF™2((G — §)% + S*(1+D) + &) Coa™ T )p".
(4.2.50)

Now, (recalling that & < p), in addition to the condition already imposed on H"** we

can further require that

a0t + (14 ¢"F) (HF™)2((Co — S)*b + S2(1 +b) + ¢3)Cod™" < pCh.
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This ensures that
(a1 = 9?6+ S?(1+b) + (1) osc(unt1, Tnyr) < Cip™t,

thus concluding the proof. O

Corollary 4.2.15 (Convergence). Provided the initial mesh Ty is chosen so that Hg***
is small enough, there exists a constant p € (0,1) such that the recursive application
of Algorithm 1 to solve problem (1.3.9) yields a convergent sequence of approximate

etgenvalues, with the property:
€=l < Cg™ )™ (4.2.51)
Proof. The proof is straightforward applying

€= Gal < MMu—ualllg

from Lemma 2.2.26, to (4.2.45). O

4.2.3 Other convergence results

In this section we present convergence result for problem (1.3.8). The convergence
proof is based on Algorithm 1.
The next theorem is very similar to Theorem 4.2.13. In fact it comes as a consequence

of Theorem 4.2.13, since the two problems (1.3.8) and (1.3.9) are very close.

Theorem 4.2.16 (Convergence). Provided the initial mesh Ty is chosen so that Hy***
is small enough, there exists a constant p € (0,1) such that the recursive application
of Algorithm 1 to solve problem (1.3.8) yields a convergent sequence of approximate

etgenvectors, with the properties:

(U — Uyt — up) 2 < Cog™CFp, (4.2.52)
A=l < CR@"T)Pp (4.2.53)

and
(A2(1 4 D) 4+ S%(2 +b) +2S\,) osc(un, T,) < Crp", (4.2.54)

where Cy and Cy are constants and g~ Y is the constant defined in Theorem 4.2.6.

Proof. The result (4.2.52) comes straightforwardly from (4.2.45), since the eigenfunc-
tions of problems (1.3.8) and (1.3.9) are the same and since a,(u — uy, v — u,)/? <

a5 (U — Up,u — un)1/2.
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Using the relation between the spectra of problems (1.3.8) and (1.3.9) is possible to de-
duce (4.2.53), since |A— A, | = | — (|, where ¢ and ¢, are the eigenvalues corresponding
to A and A,. Similarly comes (4.2.54). O
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Chapter 5

Numerics

In this chapter we present numerical results illustrating the convergence of our adaptive
FEM. We have considered the problems (1.3.7) and (1.3.8). In particular, concerning
problem (1.3.8), we solved the TE case mode because we believe that it is more inter-
esting from a mathematical point of view, since it could present localized singularities
in the gradient of the solutions. The reason why we haven’t done any computation
regarding problem (1.3.9) is because this problem has been introduced just to simplify
the analysis for problem (1.3.8).

All the numerical results in this chapter have been computed using our on research
codes which make use of ARPACK [38] and of the fast direct sparse solver for linear
problems ME27 [47] contained in the HSL archive. One of the advantages of ARPACK
is the possibility to compute just the approximations of the few eigenpairs of inter-
est. Especially, we used it to compute the smallest part of the spectrum, when we
were searching for gaps in periodic media. Then, we used again ARPACK to look for
trapped modes in periodic structures with defects just computing the approximations
of eigenpairs with eigenvalues inside the gaps. Despite the actual computation of the
wanted eigenpairs, which has been done using these free packages, we wrote all the code
necessary to do all the other tasks, like: generate the meshes, discretize the problems,
compute the error estimations and refine the meshes.

The structure of the chapter is as follows: in Section 5.1 we present the numerical
experiments on the general elliptic eigenvalue problem and the TE mode problem. In
particular, concerning the latter problem, we have done numerical experiments on both
purely periodic media and periodic media with defects. We also would like to bring
to the attention of the reader that in Subsection 5.1.5 we present an efficient way to
compute a bundle of eigenvalues for the TE case problem using just one sequence of
adapted meshes. In Section 5.2 we applied our AFEM, not just to a point in the
spectrum of the TE problem, but to entire bands of the spectra. We concentrated our
efforts on bands belonging to trapped modes of supercells. Finally, in Section 5.3 we

present a more efficient method to compute entire bands of the spectrum.
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5.1 Adaptivity and convergence

In this section, a number of results from simulations concerning the convergence of
our adaptive method are collected. However, in the first part of this section we shall
present some extra results about the error estimator 7, (introduced in (3.2.1) above),
which are particularly useful in practice.

In our computations we used Algorithm 2 below, which is very similar to the algorithm
presented in Chapter 4. The only difference is the presence of a condition to terminate
the execution of the loop. This condition is based on the value of the error estimator
and on the number of iterations already done. For this reason, we have introduced in
the algorithm the parameter tol, which sets the wanted tolerance for the error estimator
Mn, and the parameter max,, which sets the maximum number of iterations that we

are prepared to do.

5.1.1 Preliminary results

The first set of theorems show the conditions under which the high order terms in
the results of Theorem 3.3.5, Theorem 3.3.7, Theorem 3.4.3 and Theorem 3.4.4 can be
ignored. For sake of clarity we have grouped the results for the PCF case in the first

subsection and the results for the general elliptic case in the second one.

PCF case

Theorem 5.1.1. Let (; be an eigenvalue of (1.8.9) of multiplicity 1 and let (Cjn,ujn)
be computed eigenpairs for the same value of K spanning the computed eigenspace EESF,
in the sense of Remark 2.2.23. Let also the true eigenfunction U; € EJPCF be defined

as in Theorem 3.1.8. Then we have for e;, = U; — u;y that if HY* is small enough:

an,S(ej,m 6j,n)l/2 5 T (5.1.1)
where the hidden constant in 5.1.1 is different from the hidden constant in 8.3.10.

Proof. The proof comes applying the results of Chapter 3. From Theorem 3.3.5 we
have that:
(I,.;,S(ej’n, 6j,n)1/2 5 M + Gn7 (512)

2

where Gy, = 2(¢ + () (€jms €5n)0.8.0/An,5(€jms €5n) /2 is a higher order term, as

proved in Theorem 3.4.1. Now, applying Theorem 3.1.6(ii) to (5.1.2), we have

(€jns€jn)0,B.9
an,S(ejm’ ej:n) 1/2

1
an,S(ej,naej,n)l/z S M + 5((j+<j,n)

1
S M (G GO H) ans(en ). (5.1.3)
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From the minimum-maximum principle we know that (; < (j,. So supposing that

H?* is small enough, we obtain

1 2 max)2s 2 max\2s

i(CJ + ijfl)cadj (Hn ) < Cj,n Cadj (Hn ) <1 ’
and then from (5.1.3) we have that there is a constant C' such that

ar,s(€jnsejn)? < C oy

Theorem 5.1.2. Under the same assumptions as in Theorem 5.1.1 we have:
G = Gl S

Proof. The proof is straightforward from in view of Corollary 2.2.27 and Theorem 5.1.1.
O

Theorem 5.1.3. Let \; be an eigenvalue of (1.3.8) of multiplicity 1 and let (N pn, wjn)
be computed eigenpairs for the same value of K spanning the computed eigenspace EﬁgF,
in the sense of Remark 2.2.23. Let also the true eigenfunction U; € EJPCF be defined

as in Theorem 3.1.7. Then we have for ej, = U; — u;, that if H'™ is small enough:
an(ejmr€jn)? S - (5.1.4)

Proof. The proof is straightforward in view of Theorem 5.1.1 and since ay(€jn, €jn)

<
r,5(€j.n, €jm)- O

Theorem 5.1.4. Under the same assumptions as Theorem 5.1.3 we have:

Nim =X < -

~

Proof. The proof is straightforward in view of Corollary 2.2.32 and Theorem 5.1.3. [

The next corollary is very important for computations, since it proves that if the error
estimator 7, goes to 0, this implies convergence to the exact eigenpair. This justifies

our procedure of refining the elements which have big associated residual values.

Corollary 5.1.5. Let (Ajn,ujn) be a calculated eigenpair of the problem (2.2.48) for
some value of K and (\j,U;) be the corresponding eigenpair in the sense of Theo-
rem 3.1.7 of the continuous problem (1.5.8) for the same value of K. Then if the residual
error estimator 1y, goes to 0, the energy norm of the error a.(U; — ujn, U; — uj’n)l/2
and error for eigenvalues |\;, — Aj| go to 0. Moreover, if the eigenpair (Xjn,w;n)

converges to (Aj,Uj), then the residual error estimator 1, goes to 0.
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Proof. The first statement comes straightforwardly from Theorem 5.1.3 and Theo-
rem 5.1.4.

The second statement comes straightforwardly from Theorem 3.5.6. O

General elliptic case

In this subsection we have collected for the general elliptic case the analogous results

proved above.

Theorem 5.1.6. Let \; be an eigenvalue of (2.2.2) of multiplicity 1 and let (\jpn,ujn)
be computed eigenpairs spanning the computed eigenspace Ej,,, in the sense of Re-
mark 2.2.4. Let also the true eigenfunction U; € Ej; be defined as in Theorem 5.1.4.

Then we have for ej,, = U; — uj, that if H3*** is small enough:
a(€jn, ej,n)l/z S - (5.1.5)
Theorem 5.1.7. Under the same assumptions as Theorem 5.1.6 we have:

Nm =Nl S i
Corollary 5.1.8. Let (\jn,ujn) be a calculated eigenpair of the problem (2.2.2) and
(A\;,Uj) be the correspondent eigenpair in the sense of Theorem 3.1.4 of the continuous
problem (1.3.7). Then if the residual error estimator n, goes to 0, then the energy
norm of the error a(U; — wjn, Uj — uj7n)1/2 and error for eigenvalues |\, — A;| go to
0. Moreover, if the eigenpair (Xjn,ujn) converges to (Aj,Uj), then the residual error

estimator n, goes to 0.

Algorithm 2 Converging algorithm
Require: 0 <6< 1
Require: 0 < 6<1
Require: tol >0
Require: max, >0
Require: 7
n=>0
repeat
Compute (A, up) on 7,
Mark the elements using the first marking strategy (Definition 4.1.1)
Mark any additional unmarked elements using the second marking strategy (Def-
inition 4.1.4)
Refine the mesh 7, and construct 7,1
n=n+1
until 7, > tol AND n < max,
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5.1.2 Laplace operator

In the first set of simulations we have solved the Laplace eigenvalue problem on a unit
square with Dirichlet boundary conditions.

In Table 5.1, we compare different runs of Algorithm 2 using different values for § and
6. Since the problem is smooth, it follows from Theorem 2.2.10 that using uniform
refinement the rate of convergence for eigenvalues should be O(H™3)2 or equivalently
the rate of convergence in the number of degrees of freedom (DOFs) N should be
O(N~1). We measure the rate of convergence by conjecturing that |A — \,| = O(N~F)
and estimating [ for each pair of computations by the formula 8 = —log(|A — \,,|/|A —
An—1|)/log(DOFs,,/DOFs,_;). In addition, in Figure 5-1 we plotted the values of
for more iterations for @ = 8 = 0.2 and for § = § = 0.5, since 3 for those simulations
were not yet settle down in the first few iterations in Table 5.1. As can be seen in the
graph, the values of § soon starts to oscillates around 1, which is the asymptotic order
of convergence for this problem. Similarly Table 5.2 and Figure 5-2 contain the same
kind of information relative to the fourth smallest eigenvalue of the problem. As can be
seen the rate of convergence is sensitive to the values of 6 and 6. Moreover, our results
for the adaptive method show a convergence rate close to O(N~!) for 6, § sufficiently
large.

In the theory presented in [51] it is shown how the error in computed eigenvalues
for smooth problems is proportional to the square of the considered eigenvalue, i.e.
A=\ < C A2 (H2*)2, The same result can be deduced from our results in Chapter 2
with the appropriate modifications, since here we are supposing that the problem has
better regularity. Since the Laplace problem is very well understood, we know from
the theory the values for the first and the fourth eigenvalues, namely: 19.7392089 and
78.9568352. Comparing errors in Tables 5.1 and 5.2, corresponding to similar numbers
of degrees of freedom (DOFs), we see that the error grows roughly with the square of

the eigenvalue.

5.1.3 Elliptic operator with discontinuous coefficients

In this second example we investigate how our method copes with discontinuous coeffi-
cients. In order to do that we modified the smooth problem from the previous example.
We inserted a square subdomain of side 0.5 in the center of the unit square domain.
We also choose the function A (introduced in (1.3.1)) to be a scalar piecewise constant
and to assume the value 100 inside the subdomain and the value 1 outside it.

The jump in the value of A could produce a jump in the gradient of the eigenfunctions
all along the boundary of the subdomain. So the eigenfunctions now lie in H5+1(Q)
with s > 1/2 — ¢, for all € > 0 in general. We remark that from [45, Example 2.1]
we also know that v € H*"1(Q;) where s > 2/3 + O(1/a) in each subdomain §; on

which A is constant, since singularities in the gradient of the eigenfunctions may arise
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0=0=0.2 0=0=0.5 0=0=028

1 0.1350 | 400 - 0.1350 | 400 - 0.1350 400 -

2 || 0.1327 | 498 | 0.0802 || 0.1177 | 954 | 0.1581 || 0.0529 1989 | 0.5839
3] 0.1293 | 613 | 0.1228 || 0.0779 | 1564 | 0.8349 || 0.0176 5205 | 1.1407
4| 0.1256 | 731 | 0.1645 || 0.0501 | 1977 | 1.8788 || 0.0073 | 15980 | 0.7877
5| 0.1215 | 854 | 0.2138 | 0.0351 | 2634 | 1.2383 || 0.0024 | 48434 | 0.9836
6 || 0.1165 | 970 | 0.3340 | 0.0176 | 4004 | 0.7885 || 0.0009 | 122699 | 1.0673
71 0.1069 | 1097 | 0.6962 | 0.0121 | 6588 | 0.7217 || 0.0003 | 312591 | 1.0083

Table 5.1: Comparison of the reduction of the error and DOFs of the adaptive method
for the smallest eigenvalue for the Laplace problem on the unit square.

— % -6=0.2
—6—6=05 ||

12

14

16

18

Figure 5-1: The graph contains the values of § for the smallest eigenvalue for the
Laplace problem on the unit square for § = 8 = 0.2 and for § = 6§ = 0.5.
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0=0=0.2 0=0=0.5 0=0=0.38

1 2.1439 | 400 - 2.1439 400 - 2.1439 400 -

2| 2.0997 | 505 | 0.0895 || 1.8280 | 1016 | 0.1658 || 0.7603 2039 | 0.6365
3] 2.0549 | 626 | 0.1004 | 1.0850 | 1636 | 1.1662 | 0.2439 6793 | 0.9447
4| 1.9945 | 759 | 0.1548 || 0.7792 | 12254 | 1.0331 | 0.0917 | 18717 | 0.9652
5 1.9164 | 883 | 0.2638 || 0.4936 | 3067 | 1.4826 || 0.0331 | 54113 | 0.9583
6 1.7717 | 1017 | 0.5557 | 0.3484 | 4681 | 0.8240 || 0.0120 | 146056 | 1.0181
7| 1.6463 | 1131 | 0.6911 | 0.2578 | 7321 | 0.6730 || 0.0046 | 382024 | 0.9970

Table 5.2: Comparison of the reduction of the error and DOFs of the adaptive method
for the fourth smallest eigenvalue for the Laplace problem on the unit square.

8 10

12

14

16

18

20

Figure 5-2: The graph contains the values of 3 for the fourth smallest eigenvalue for
the Laplace problem on the unit square for § = § = 0.2 and for § = 0 = 0.5.
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in the corners of the subdomains. Since we resolve exactly the interface between the
subdomains, in our numerical results we see a convergence speed coming from just the
singularities arising at the corners of the subdomains.

From Theorem 2.2.10 and using uniform refinement, the rate of convergence for eigen-
values should be at least O( H2#*)2% or equivalently O(N ~%), where N is the number of
DOFs. In Table 5.3 there are the results of the computations using a sequence of uni-
form meshes; the value of 3 is computed as explained before and it could be considered
as a rough approximation to s. In this case the exact eigenvalue X is unknown, but we
approximate it by computing the eigenvalue on a very fine mesh involving about half
a million of DOF's.

Using our adaptive method we obtain greater orders of convergence for big enough
value of 0 and 6, as can be seen from Table 5.4. In fact the rate of convergence for
6 =6 =0.5or 0.8 is close to the rate of convergence for smooth problems showed in
Table 5.1 and Table 5.2. To make the comparison between our method and uniform
refinement easier, we summarize the results in Table 5.5. From Table 5.5 it is clear the
advantage in using our adaptive method, since the error for eigenvalues is much lower
with the same number of DOFs. However, the performance of our adaptive method
is sensitive to the value of # and ; from our computations, it resulted that for this
problem the best value for both 6 and 6 is 0.8.

To illustrate Theorem 5.1.7, we have constructed Table 5.6, where in the columns la-
beled by C,. we have estimated numerically the value of the hidden constant in the result
of Theorem 5.1.7. To compute the values of C,., we have used: C, = m
The fact that the values of C, are all contained in a small range, is a numerical evi-
dence that the result in Theorem 5.1.7 underlines the behavior of our residual-based
error estimator and that the effects of higher order terms are negligible. Moreover, it
shows that in this case the hidden constant C, is of very moderate size. In order to
show the quality of our error estimator, we have also compared in Table 5.6 the true
errors with the value of the residuals for different choices of # and 6. From Table 5.6 is
clear that the error-residual value n?2 is always an upper bound for the true error and,
moreover, it is possible to see that 7, strictly mimics the decay of the true error, since,
as said above, the values of C, are in a small range. This latter fact is particularly
interesting since it implies that the error-residual can be used as an indicator for the
behavior of the true error. Unfortunately, due to the small value of C,, the quantity
7 can not be used as a good indicator of the value of the true error, at least not for
this particular problem.

In Table 5.7, we compare computational estimations of the value of p introduced in The-

orem 4.1.17. To compute the values p, we used the formula p = \/|]A — Ap|/|]A — Ay_1].
It is clear that the values of p, and then the rate of convergence, is sensitive to the

values of # and 0. In particular, greater values of 8 and 6 lead to smaller p and conse-

114



quentially to a faster convergence. Another interesting thing to notice is that the value
of p remains almost constant during each run of the algorithm, this is a consequence of
the monotone decay of the error that we experienced in our simulations. Such behavior
of the error is better than what predicted in Theorem 4.1.17, since that result does not
imply a monotone decay of the error, but just the monotone decay of an upper bound
of the error. So, according to that result, the error could oscillate.

In Figure 5-3 we depict the mesh coming from the fourth iteration of Algorithm 2
with @ = § = 0.8. This mesh is the result of multiple refinements using both marking
strategies 1 and 2 each time. As can be seen the corners of the subdomain are much
more refined than the rest of the domain. This is clearly the effect of the first marking
strategy, since the residual has detected singularities in the corners.

Finally in Figure 5-4 we depict the eigenfunction corresponding to the smallest eigen-

value of the problem with discontinuous coefficients.

5.1.4 TE case problem on periodic medium

Now, we are going to consider an example arising from PCF applications. We will
consider the TE case problem for a periodic medium with square inclusions. The unit
cell, on which we are going to solve this problem, is the unit square with a square
inclusion of side 0.5 which is centered within the unit cell. We choose the function A
to be piecewise constant and to assume the value 10000 inside the subdomain and the
value 1 outside it. This is an academic example, since expected jumps in dielectric
properties of real PCFs, are much more moderate than this.

As already seen for the general elliptic eigenvalue problem, the jump in the value of A
could produce a jump in the gradient of the eigenfunctions all along the boundary of
the subdomain. As above, the eigenfunctions lie in H*T1(Q), with s > 1/2 — ¢, for all
€ > 0 in general. However, since we resolve exactly the interface also in this example,
we see a convergence speed coming from the regularity of the eigenfunctions in each
subdomain, which is u € H**1(€);) where s > 2/3 + O(1/a) in each subdomain €2; on
which A is constant.

From Theorem 2.2.33, using uniform refinement, the rate of convergence for eigenvalues
should be at least O( H™2X)2s or equivalently O(N ~?), where N is the number of DOFs.
In Table 5.8 there are the results of the computations using a sequence of uniform
meshes; the value of 8 is computed as explained before and it could be considered an
approximation of s.

Instead, using our method we obtain greater orders of convergence for some value of 6
and 0, as can be seen from Table 5.9. In fact the rate of convergence for 6 = 0 = 0.8 is
close to the rate of convergence for smooth problems. In this case the exact eigenvalue
A is unknown, but we approximate it by computing the eigenvalue on a very fine mesh

involving about a million of DOFs. To get easier the comparison between our method
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[p]A-Ml] N | A |
1 1.1071 81 -
2 || 0.3521 289 | 0.9005
3| 0.1168 | 1089 | 0.8316
4 || 0.0399 | 4225 | 0.7924
5 || 0.0136 | 16641 | 0.7874
6 || 0.0042 | 66049 | 0.8537

Table 5.3: Uniform refinement for the smallest eigenvalue of the generic elliptic eigen-

value problem with discontinuous coefficients.

0=0=0.2 0=0=0.5 0=0=08

1 1.1071 81 - 1.1071 81 - 1.1071 81 -

2 || 1.0200 | 103 | 0.3410 || 0.8738 | 199 | 0.2632 | 0.4834 356 | 0.5597
3| 1.0105 | 129 | 0.0416 | 0.5848 | 314 | 0.8805 | 0.2244 799 | 0.9494
4 || 1.0039 | 147 | 0.0498 || 0.3983 | 491 | 0.8591 || 0.0990 | 2235 | 0.7957
5 || 0.8968 | 167 | 0.8843 | 0.2766 | 673 | 1.1564 || 0.0401 | 4764 | 1.1932
6 || 08076 | 194 | 0.6996 | 0.1933 | 975 | 0.9665 || 0.0180 | 12375 | 0.8372
71 0.8008 | 217 | 0.0747 || 0.1346 | 1476 | 0.8722 || 0.0065 | 29148 | 1.1888
8 || 0.7502 | 237 | 0.7401 || 0.0948 | 2080 | 1.0237 || 0.0020 | 65387 | 1.4482

Table 5.4: Comparison of the reduction of the error and DOFs of the adaptive method
for the smallest eigenvalue of the generic elliptic eigenvalue problem with discontinuous

coefficients.
Uniform Adaptive
f=6=0.5 f=6=0.2.8
H)\—)\nH N \n \)\—)\nH N \n ])\—/\nH N \n
1.1071 81 1 1.1071 81 1 1.1071 81 1
0.3521 289 | 2 || 0.2766 673 5 0.2244 799 |3
0.1168 | 1089 | 3 || 0.0948 | 2080 | 8 0.0990 | 2235 | 4
0.0399 | 4225 | 4 || 0.0315 | 6039 | 11 || 0.0180 | 12375 | 6
0.0136 | 16641 | 5 || 0.0148 | 12607 | 13 | 0.0065 | 29148 | 7
0.0042 | 66049 | 6 || 0.0038 | 37126 | 16 || 0.0020 | 65387 | 8

Table 5.5: Comparison between uniform refinement and the adaptive method for the
smallest eigenvalue of the generic elliptic eigenvalue problem with discontinuous coef-

ficients.
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Figure 5-3: A refined mesh from the adaptive method corresponding to the smallest

eigenvalue of the generic elliptic eigenvalue problem with discontinuous coefficients.

0=6=0.2 0=0=0.5 f=0=0..8

| A= Al \ M \ C, IA— Al \ Mn \ C, IA— Al \ Mn \ C,

1 1.1071 | 6.5037 | 0.1618 1.1071 | 6.5037 | 0.1618 1.1071 6.5037 | 0.1618
2 1.0200 | 6.1186 | 0.1651 0.8738 | 5.3345 | 0.1752 0.4834 3.9436 | 0.1763
3 1.0105 | 5.9781 | 0.1681 0.5848 | 4.3535 | 0.1757 || 0.2244 2.6795 | 0.1768
4 1.0039 | 5.8811 | 0.1704 || 0.3983 | 3.5011 | 0.1803 || 0.0990 1.7435 | 0.1804
b 0.8968 | 5.6211 | 0.1685 0.2766 | 2.9665 | 0.1773 0.0401 | 1.16448 | 0.1720
6 0.8076 | 5.3577 | 0.1677 0.1933 | 2.5043 | 0.1756 0.0180 0.7496 | 0.1792
7 0.8008 | 5.1562 | 0.1736 0.1346 | 2.0853 | 0.1760 0.0065 0.4925 | 0.1639
8 0.7502 | 4.9499 | 0.1750 0.0948 | 1.7230 | 0.1787 0.0020 0.3223 | 0.1395

Table 5.6: Comparison between the reduction of the error and the computed residual
for the adaptive method for the smallest eigenvalue of the generic elliptic eigenvalue
problem with discontinuous coefficients.
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1.5+

Figure 5-4: The eigenfunction corresponding to the smallest eigenvalue of the generic
elliptic eigenvalue problem with discontinuous coefficients.

0=0=0.2 0=0=0.5 0=0=0.8
|>‘_>\n’ ‘ p ‘)‘_)\n| ‘ b |>‘_>\n’ ‘ p
1.1071 - 1.1071 - 1.1071 -
1.0200 | 0.9599 || 0.8738 | 0.8884 || 0.4834 | 0.6608
1.0105 | 0.9953 || 0.5848 | 0.8181 || 0.2244 | 0.6813
1.0039 | 0.9968 || 0.3983 | 0.8253 || 0.0990 | 0.6642
0.8968 | 0.9452 || 0.2766 | 0.8333 || 0.0401 | 0.6367
0.8076 | 0.9489 || 0.1933 | 0.8360 || 0.0180 | 0.6706
0.8008 | 0.9958 || 0.1346 | 0.8346 || 0.0065 | 0.6010
0.7502 | 0.9679 || 0.0948 | 0.8390 || 0.0020 | 0.5571

OO x| W3

Table 5.7: Comparison between the values of p for different values of 6 and 6 for
the smallest eigenvalue of the generic elliptic eigenvalue problem with discontinuous
coefficients.
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and uniform refinement, we dedicated Table 5.10 to this point.

In view of Theorem 5.1.4, we have constructed Table 5.11 where in the columns C,
we have estimated numerically the value of the hidden constant in the result of Theo-
rem 5.1.4. The same consideration from the previous example can be applicable here.
In Figure 5-5 we depict the mesh coming from the fourth iteration of Algorithm 2
with § = § = 0.8. This mesh is the result of multiple refinements using both marking
strategies 1 and 2 each time. As can be seen the corners of the subdomain are much
more refined than the rest of the domain.

In Table 5.12, we compare computational estimations of the value of p considered in

Theorem 4.2.16. To compute the values p, we used the formula p = \/|A — Au|/|A — Ap—1].
It is clear that the values of p, and then the rate of convergence, is sensitive to the
values of # and 0. In particular, greater values of 8 and 6 lead to smaller p and conse-
quentially to a faster convergence. Another interesting thing to notice is that the value
of p remains almost constant during each run of the algorithm, this is a consequence
of the monotone decay of the error that we experienced in our simulations.

Finally in Figure 5-6 we depict the eigenfunction corresponding to the smallest eigen-
value of the problem with discontinuous coefficients. This eigenfunction is the one used

to refine the mesh in Figure 5-5.

5.1.5 A more efficient way to compute a bundle of eigenvalues for the
TE case problem

In this subsection we are going to present a more efficient way to compute many
eigenvalues for the TE case problem on periodic medium. The improved efficiency
comes from the fact that we use just one sequence of adapted meshes for all eigenvalues.
The idea presented below can be used with any kind of elliptic eigenvalue problem.
Suppose that you want to compute the smallest r eigenvalues for a fixed quasimomen-
tum, then you can use our adaptive method on the r-th eigenvalue to construct a finite
sequence of adapted meshes. Then, you can use the same sequence of meshes to com-
pute with a quite good accuracy all the eigenvalues smaller than the r-th one. This very
simple technique works very often because the eigenfunctions higher in the spectrum
have also higher frequencies, so a mesh, that can resolve well such high frequencies, it
can also resolve well the lower frequencies of the eigenfunctions lower in the spectrum.
Moreover, when we are in presence of singularities in the gradient that are localized
always in the same places for all eigenfunctions, as in this case, the mesh computed
for the r-th eigenvalue resolves well also the singularities in the gradient of all other
eigenfunctions.

In Table 5.13 we compared the errors on two sequences of meshes relative to the smallest
eigenvalue for the TE case problem on the same periodic cell as in the previous section

and with quasimomentum equal to £ = (7/4,7/4). On the left we have the results
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[n[D-Ml| N | A ]
1| 6.1948 64 -
2 || 1.9462 256 | 0.8352
3| 0.6458 | 1024 | 0.7957
4 || 0.2242 | 4096 | 0.7632
51 0.0797 | 16384 | 0.7458
6 || 0.0280 | 65536 | 0.7540

Table 5.8: Uniform refinement for the second smallest eigenvalue of the TE case problem

on a periodic medium with quasimomentum to < = (0, 0).

0=0=0.2 0=0=0.5 0=0=08

n |)‘_)\n’ ‘ N ‘ 5 ‘)‘_)\n| ‘ N ‘ ﬁ |)‘_>\n| ‘ N ‘ ﬁ

1 6.1948 | 64 - 6.1948 64 - 6.1948 64 -

2| 57120 | 76 | 0.4722 || 4.0876 | 131 | 0.5804 || 2.2780 229 1 0.7848
3| 4.8996 | 96 | 0.6567 || 2.4078 | 247 | 0.8345 | 0.8771 642 | 0.9258
4 | 3.9523 | 188 | 0.3197 || 1.3960 | 536 | 0.7036 || 0.3468 | 2117 | 0.7777
5 || 3.4904 | 199 | 2.1855 || 0.8976 | 712 | 1.5553 || 0.1373 | 5859 | 0.9098
6 || 29544 | 223 | 1.4642 | 0.5491 | 1248 | 0.8758 || 0.0603 | 13791 | 0.9622
7| 25152 | 270 | 0.8415 || 0.3664 | 1884 | 0.9819 || 0.0252 | 31067 | 1.0743
8 || 2.2882 | 308 | 0.7182 || 0.2795 | 2972 | 0.5939 || 0.0105 | 70523 | 1.0667

Table 5.9: Comparison of the reduction of the error and DOFs of the adaptive method
for second smallest eigenvalue of the TE case problem on a periodic medium with

quasimomentum to & = (0,0).

Uniform Adaptive
0=0=0.5 0=60=0.38
H)\—)\HH N \n \)\—)\HH N \n ])\—)\nH N \n
6.1890 64 1] 6.1890 64 1 6.1890 64 1
1.9404 256 | 2| 1.3960 535 4 0.8771 642 | 3
0.6400 | 1024 | 3 || 0.5491 1248 | 6 0.3468 | 2117 | 4
0.2184 | 4096 | 4 || 0.2795 | 2972 | 8 0.1373 | 5859 | 5
0.0739 | 16384 | 5 || 0.0771 | 11025 | 11 || 0.0603 | 13791 | 6
0.0222 | 65536 | 6 || 0.0195 | 47035 | 15 || 0.0252 | 31067 | 7

Table 5.10: Comparison between uniform refinement and the adaptive method for the
second smallest eigenvalue of the TE problem on a periodic medium with quasimomen-

tum to K = (0,0).
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0=0=0.2 0=0=0.5 0=0=0.28

n || A=Ayl ‘ "In ‘ Cr A = A ‘ "in ‘ Cr A= An ‘ "In ‘ Cr

1 6.1948 | 12.5299 | 0.1986 6.1948 | 12.5299 | 0.1986 6.1948 | 12.5299 | 0.1986
2 5.7120 | 11.6360 | 0.2054 4.0876 9.4685 | 0.2135 2.2780 7.2670 | 0.2077
3 4.8996 | 10.9426 | 0.2023 2.4078 7.5190 | 0.2064 0.8771 4.5452 | 0.2061
4 3.9523 9.3597 | 0.2124 1.3960 5.3257 | 0.2219 0.3468 2.8269 | 0.2083
5 || 3.4904 | 9.0548 | 0.2063 || 0.8976 | 4.5155 | 0.2098 | 0.1373 1.8748 | 0.1977
6 || 2.9544 | 8.5901 | 0.2001 || 0.5491 | 3.7234 | 0.1990 | 0.0603 1.3077 | 0.1877
7| 25152 | 7.8811 | 0.2012 || 0.3664 | 3.1270 | 0.1936 || 0.0252 | 0.9238 | 0.1718
8 2.2882 7.5483 | 0.2004 0.2795 2.6477 | 0.1997 0.0105 0.6462 | 0.1586

Table 5.11: Comparison between the reduction of the error and the computed residual
for the adaptive method for the second smallest eigenvalue of the TE problem on a
periodic medium with quasimomentum to & = (0, 0).

0=0=0.2 0=0=0.5 0=0=0.8
n |)‘*)\n’ ‘ p ‘)‘*)\n| ‘ p |)‘*)\n| ‘ p
1 6.1948 - 6.1948 - 6.1948 -
2 || 5.7120 | 0.9602 || 4.0876 | 0.8123 || 2.2780 | 0.6064
3| 4.8996 | 0.9262 || 2.4078 | 0.7675 || 0.8771 | 0.6205
4| 3.9523 | 0.8981 || 1.3960 | 0.7614 || 0.3468 | 0.6288
5 || 3.4904 | 0.9398 || 0.8976 | 0.8019 || 0.1373 | 0.6293
6 || 29544 | 0.9200 || 0.5491 | 0.7821 || 0.0603 | 0.6624
7| 2.5152 | 0.9227 || 0.3664 | 0.8169 || 0.0252 | 0.6465
8 || 2.2882 | 0.9538 || 0.2795 | 0.8734 || 0.0105 | 0.6458

Table 5.12: Comparison between the values of p for different values of 6 and 6 for the

second smallest eigenvalue of the TE problem on a periodic medium with quasimomen-

tum to £ = (0,0).

121




0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 5-5: A refined mesh from the adaptive method corresponding to the second
smallest eigenvalue of the TE problem on a periodic medium with quasimomentum to

7 = (0,0).
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Figure 5-6: The eigenfunction corresponding to the second smallest eigenvalue of the
TE problem on a periodic medium with quasimomentum to & = (0, 0).
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computed refining the meshes according to the first smallest eigenvalue, instead on the
right we have the results computed refining the meshes accordingly the sixth smallest
eigenvalue.

In Table 5.14 we have done the same comparison considering the second smallest eigen-
value of the same problem.

In conclusion we have that more than on eigenvalue can be computed on the same
adapted mesh with good accuracy. But, on the other hand, it is straightforward that

in general this method will only converge for the eigenvalue used to refine the meshes.

5.1.6 TE mode problem on supercell

Now it is time to consider a different and more interesting problem coming from ap-
plications. In this section we are going to hunt for frequencies of light trapped in the
defect of a PCF. We continue to work with the TE case problem and the periodic
structure, surrounding the defect, will be the same as the one analysed in the previous
section. The defect will be a missing inclusion in the center of the section of the PCF.
As explained in Chapter 1, we are going to use the supercell framework [49] to compute
the modes coming from the defect. The supercell that we use has two layers of periodic
structure surrounding the defect, as depicted in Figure 5-7.

Since the jumps of the coefficient A are the same as in the previous example, we have
that also the regularity of the eigenfunction trapped in the defect is, in each subdomain,
u € H5(€;), with s > 2/3+0O(1/a@). In Table 5.15 we can see the result using uniform
refinement, the values of 3 are pretty similar to the ones in Table 5.8, as predicted.
Instead, using our method we obtain greater orders of convergence, as can be seen from
Table 5.16. For trapped modes is usual to have peaks in the values of 3 that could
exceed easily 1. For this problem the difference in the accuracy between our method
and the uniform refinement method is much more profound than before. The reason
is not only that we refine around the corners, where the singularities are, but also,
because the most part of the “energy” of the solution is inside the defect, which is a
very small region. Also for this case we computed the “exact” value of the eigenvalue
A using more than one million of DOFs. To get easier the comparison between our
method and uniform refinement, we dedicated Table 5.17 to this point.

In view of Theorem 5.1.4, we have constructed Table 5.18 where in the columns C,
we have estimated numerically the value of the hidden constant in the result of Theo-
rem 5.1.4. This time the values C). seems not to be yet settled down.

In Figure 5-8 we depict the mesh coming from the fourth iteration of Algorithm 2 with
6 =6 = 0.8. As can be seen there is a lot of refinement in the defect and just outside
it, especially around the corners of the inclusions. Away from the defect there is just
a bit of refinement which is again around the corners of the inclusions, the reason why

the refinement is so concentrated in the defect and the reason why the corners of the
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[A=Ml[ N [ B [D=M[ N | 8 |
23309 | 64 | - | 23399 | 64 | _

1.0810 | 231 | 0.6016 | 1.7819 | 277 | 0.1860
04506 | 637 | 0.8630 | 0.4583 | 941 | 1.1104
0.1621 | 2279 | 0.8019 | 0.4386 | 2239 | 0.0507
0.0411 | 7038 | 1.2160 | 0.3791 | 7177 | 0.1252
0.0108 | 22724 | 1.1377 | 0.1027 | 14560 | 1.8461
0.0028 | 80181 | 1.0730 | 0.0838 | 35861 | 0.2339

~So|ao| | w| o~ 3

Table 5.13: Comparison of the reduction of the error and DOFs using different se-
quences of refined meshes of the adaptive method for first smallest eigenvalue of the
TE case problem on a periodic medium with quasimomentum equal to & = (7/4,7/4).
The columns on the left are computed refining the meshes accordingly the first small-
est eigenvalue, instead the columns on the right are computed refining the meshes
accordingly the sixth smallest eigenvalue.

[P N [ 3 [P W[ N [ 7]
7.9082 64 - 7.9082 64 -
3.8633 210 0.6029 3.0248 277 0.6559
2.1012 644 0.5435 1.1982 941 0.7572
1.3480 2311 | 0.3474 0.7021 2239 | 0.6166
0.3841 8106 | 1.0004 0.4161 7177 | 0.4492
0.1760 | 26196 | 0.6654 0.1477 | 14560 | 1.4639
0.0477 | 90790 | 1.0505 0.0947 | 35861 | 0.4936

oo | w| |~ 3

Table 5.14: Comparison of the reduction of the error and DOFs using different se-
quences of refined meshes of the adaptive method for second smallest eigenvalue of the
TE case problem on a periodic medium with quasimomentum to i = (7/4,7/4). The
columns on the left are computed refining the meshes accordingly the second smallest
eigenvalue, instead the columns on the right are computed refining the meshes accord-
ingly the sixth smallest eigenvalue.

[p[A-MI] N | B8 |
0.5858 | 10000 | -

0.1966 | 40000 | 0.7876
0.0653 | 160000 | 0.7951

0.0188 | 640000 | 0.8982

BSlwiNo =S

Table 5.15: Uniform refinement for a trapped eigenvalue of the TE case problem on a
supercell with quasimomentum < = (0, 0).
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Figure 5-7: The structure of the supercell used for the computations.

126



inclusions away from the defect seem to not show important singularities, is because
the trapped mode has a fast decay outside the defect that flatten down the singularities
that it encounters, see Picture 5-9.

In Table 5.19, we compare computational estimations of the value of p considered in
Theorem 4.2.16. As we have already noticed in the other examples before, the values
of p is sensitive to the values of 6 and #. Again as before, greater values of § and 6 lead
to smaller p. The fact that the value of p remains almost constant during each run of
the algorithm is a consequence of the monotone decay of the error that we experienced
in our simulations.

Finally in Figure 5-9 we depict the eigenfunction corresponding to the mode trapped

inside the defect. This eigenfunction is the one used to refine the mesh in Figure 5-8.

5.2 Spectral bands and trapped modes

In this section we describe how we applied our method to compute a band of the
spectrum, instead of a single eigenpair for a fixed value of the quasimomentum. We
analysed the band associated to a trapped mode in a supercell. We choose this problem
because it is very relevant for applications.

In Chapter 1 we explained how a compact defect in a periodic structure could produce
eigenvalues in the gaps between bands of essential spectrum. Also in Chapter 1, we
anticipated that we were going to use the supercell framework to look for trapped
mode in gaps and as consequence of this choice we have that the defects could produce
narrow bands of essential spectra in the gaps, instead of eigenvalues. These narrow
bands should eventually shrink to eigenvalues, if we increase the size of the supercell.
We used the supercell displayed in Figure 5-7. Since the shape of the cell is square
of length 5, it follows that the first Brillouin zone associated to this supercell is K =
[~7/5,7/5]? as shown in Figure 5-10.

In order to approximate the band corresponding to a trapped mode, we used the values
of the quasimomentum coming from a uniform grid of 13 points per side on the first
Brillouin zone. There are standard arguments based on the symmetries of the operator
for our problem, which are used also in [8, 16, 4], saying that it is not necessary to use
all the values of the quasimomentum in the first Brillouin zone to analyse the bands.
But it is enough to use the values for the quasimomentum inside the reduced first
Brillouin zone (which is the grey region in Figure 5-10). Moreover, we are going to
use only the points of the uniform grid inside the reduced first Brillouin zone. For
each considered value of the quasimomentum, we have computed the corresponding
eigenvalue, in the band of the trapped mode, using firstly a sequence of uniform meshes
and then sequences of adapted meshes using different values for 6 and 0.

The most important piece of information, that is possible to get from this kind of
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0=0=0.2 0=0=0.5 0=0=0.28
n[A-x[] N | B A= N | B M- N | B
1| 0.5886 | 10000 - 0.5886 | 10000 - 0.5886 | 10000 -
2 || 0.5108 | 10093 | 15.3015 || 0.3876 | 10866 | 5.0306 || 0.2340 | 15076 | 2.2467
3| 0.4279 | 10340 | 7.3227 0.2590 | 14064 | 1.5622 || 0.1075 | 25716 | 1.4569
4 || 0.3945 | 10811 | 1.8266 0.1523 | 18612 | 1.8948 || 0.0473 | 64680 | 0.8902
5 || 0.3746 | 11357 | 1.0511 0.0952 | 23726 | 1.9349 | 0.0199 | 131440 | 1.2224

Table 5.16: Comparison of the reduction of the error and DOF's of the adaptive method
for a trapped eigenvalue of the TE case problem on a supercell with quasimomentum

i =(0,0).
Uniform Adaptive
f=60=05 §=60=038
(A=l N [n[A=XN]] N [n[[A-X] N [n
0.5858 | 10000 [ 1 | 0.5858 | 10000 | 1 [ 0.5858 | 10000 | 1
0.1966 | 40000 | 2 || 0.1523 | 18612 | 4 [ 0.1075 | 25716 | 3
0.0653 | 160000 | 3 | 0.0570 | 51542 | 7 | 0.0473 | 64680 | 4
0.0188 | 640000 | 4 || 0.0115 | 218937 | 11 [ 0.0199 | 131440 | 5

Table 5.17: Comparison between uniform refinement and the adaptive method for
a trapped eigenvalue of the TE case problem on a supercell with quasimomentum

7 =(0,0).
0=0=0.2 0=0=05 0=60=0.8
n X=Xl m | C A=l | mm | G A=l | mm | O
1] 05886 [ 3.5771 ] 0.2145 || 0.5886 | 3.5771 | 0.2145 || 0.5886 | 3.5771 | 0.2145
2 [ 0.5108 | 3.4409 | 0.2077 || 0.3876 | 3.1316 | 0.1988 | 0.2340 | 2.3296 | 0.2077
3 [ 0.4279 |3.3280 | 0.1966 || 0.2590 | 2.6531 | 0.1918 || 0.1075 | 1.7441 | 0.1880
4 ] 0.3945 | 3.2105 [ 0.1956 || 0.1523 | 2.0561 | 0.1898 || 0.0473 | 1.2288 | 0.1770
5 [ 0.3746 | 3.1288 | 0.1956 || 0.0952 | 1.7375 | 0.1776 || 0.0199 | 0.8892 | 0.1586

Table 5.18: Comparison of the reduction of the error and the residuals of the adaptive
method for a trapped eigenvalue of the TE case problem on a supercell with quasimo-
mentum & = (0,0).

0=0=0.2 0=0=0.5 0=0=0..8
n M_An’ ‘ p ‘)‘_)‘n‘ ‘ b M_An’ ‘ p
1| 0.5886 - 0.5886 - 0.5886 -
2 || 0.5108 | 0.9316 || 0.3876 | 0.8115 || 0.2340 | 0.6306
3 || 0.4279 | 0.9153 || 0.2590 | 0.8175 || 0.1075 | 0.6777
41 0.3945 | 0.9601 || 0.1523 | 0.7669 || 0.0473 | 0.6633
5 || 0.3746 | 0.9744 || 0.0952 | 0.7907 || 0.0199 | 0.6483

Table 5.19: Comparison between the values of p for different values of 6 and 6 for
a trapped eigenvalue of the TE case problem on a supercell with quasimomentum
K =(0,0).

128




Figure 5-8: An adapted mesh for a trapped eigenvalue of the TE case problem on a
supercell with quasimomentum < = (0, 0).
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Figure 5-9: A picture of the eigenfunction trapped in the defect of the TE case problem
on a supercell with quasimomentum < = (0, 0).
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Figure 5-10: A picture of the first Brillouin zone associated to the used supercell and,
in grey, the reduced Brillouin zone.
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computation, is the position of the band of the trapped mode inside the gap. The
position of the band is important because, if the computation is accurate, the physical
frequency of the trapped mode would be near the center of the band. So, we decided
to measure the error in the computations monitoring the absolute value of the error
of the position of the center of the computed bands, with respect to the position of
the center of the band computed using very fine meshes with more than one million of
DOFs. In Table 5.20 there are the results using both the sequence of uniform meshes
and adaptive method; as before n is the iteration number, moreover, we introduce the
notation errpes to denote the error in the position of the band and N™#* to denote the

maximum number of DOFs used in a mesh for a fixed iteration.

Uniform Adaptive
0=6=0.5 0=60=0.38
eITpos ‘ [Nmax ‘ eITpos ‘ [ymax ‘
0.6302 | 10000 0.6302 | 10000
0.2978 | 16121 0.2781 | 16581
0.0654 | 96147 0.0593 | 113276
0.0309 | 243674 0.0219 | 337072

eITpos | N™* ‘
0.6302 | 10000
0.2128 | 40000
0.0693 | 160000
0.0177 | 640000

> Wl N~ S
Ol | Ww| =3
G|~ S

Table 5.20: Comparison between uniform refinement and adaptive method applied to
the band of the trapped mode for the TE case problem on a supercell.

5.3 An efficient and convergent method to compute the
bands

In the last section we have approximated the band corresponding to a trapped mode
in a supercell. In order to do that we choose many values of quasimomentum < and
for each value of K we run Algorithm 2 starting from the same structured mesh. This
method is very inefficient because, from the theory [15, 35] it is clear that the bands
in the spectrum are continuous, in the sense that each eigenpair as a function of £ is
continuous. So, it is reasonable to suppose that, for close values of K, the correspond-
ing eigenpairs in the same band are very close, too. Moreover, the adaptive method
should produce very similar meshes for close enough values of . This should suggest
a more efficient way to approximate bands, in which information from different runs of
Algorithm 2 are shared. We would like to find a way to reuse the same adapted meshes
for close values of K.

In this section we are going to describe such an efficient method to compute bands in
the spectrum. By efficient we mean that the method needs fewer mesh refinements
to reach the same approximation of a band as the adaptive method illustrated in the
previous section. Moreover, we are going to show that the sequence of approximated

bands C,, computed with this method converges to the true band C.
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Let Gy be a conforming and shape regular mesh of triangles constructed on the reduced
first Brillouin zone K,oq - see Figure 5-10. We are going to construct a sequence of
meshes on K,oq starting with the mesh Gy and where G, 41 is the resulting mesh after
all the elements in G,, have been refined as described in Figure 5-11. It is important
to understand that the meshes G,, are different from the meshes 7,,, since the formers
are subdivision of the reduced first Brillouin zone K,cq, while 7,, are subdivision of the
primitive cell 2. Moreover, we denote by N, the set of all the nodes in the mesh G,,.
In the method that we are going to present, we shall use Algorithm 2 as a subroutine,
so let us define in Algorithm 3 the subroutine called AFEM implementing Algorithm 2.
The subroutine AFEM is just a rewriting of Algorithm 2 in the form of a subroutine.
AFEM takes as inputs the value of the quasimomentum & for which compute the
approximated eigenpair (A,,uy), the initial mesh 7p, the values of 6 and 6 for the
marking strategies and the parameters for the stopping criteria tol and max,. The
subroutine returns the eigenpair (A, u,) computed on the finest constructed mesh 7,
and the mesh 7, itself.

Let’s introduce the notation (AF,, uk

®) and 7% to denote the computed eigenpair and

the mesh used to compute it for the value of the quasimomentum < € N,,,. Thanks to
the particular refining procedure that we have adopted to refine meshes G,,, each point
in # € N1 has a unique “father” x/ € N, where the father of the node & € N1
is the node #’ € N,, closest to #. In the case that & € Nimi1 NNy, then the father is
K = K. The relation is explained graphically in Figure 5-12.

Let’s also define a function FatherMesh which takes as argument a point £ € N1
and it returns the mesh 7%, where & is the father of &.

Now it is time to present our efficient method to approximate bands, which is illus-
trated in Algorithm 4. This algorithm works on two levels A and B. In the level A,
which is implemented in the external repeat-until loop with counter m, the algorithm
constructs the sequence of meshes G,, on the reduced first Brillouin zone K,eq. At
each iteration a finer mesh G,+1 is constructed refining the previous mesh G,, by the
refinement procedure illustrated in Figure 5-11. Moreover, each iteration of level A
constructs an approximation C,, of the band of interest using level B, which is de-
scribed next. In the level B, which is implemented in the inner for-all-do loop, many
sequences of adapted meshes on the primitive cell {2 are constructed, each sequence
corresponds to a different node K € N,,. The purpose of this level is to apply our
AFEM to approximate the eigenpair of interest for each value of the quasimomentum
K € Np. Any run of Algorithm 4 may consist in many iteration of levels A and B.
The Algorithm 4 is more efficient in approximating bands than the adaptive algorithm
presented in the previous section, since, for each child node R, the adaptive procedure
in level B, which is used to approximate the eigenpair, starts from the already adapted

mesh of the father node from the previous iteration of level A. This exchange of infor-
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Figure 5-11: An element of a mesh G, split in 9 elements.

Algorithm 3 The subroutine AFEM

(Ans tn, Tp) := AFEM(R, Ty, 0, 0, tol, max,,)

n=>0

repeat
Compute (A, u,) on 7, with quasimomentum equal to <
Mark the elements using the first marking strategy (Definition 4.1.1)
Mark any additional unmarked elements using the second marking strategy (Def-
inition 4.1.4)
Refine the mesh 7, using bisection 5 and construct 7,41
n=n+1

until 7, > tol AND n < max,

134



Figure 5-12: A refined element of a mesh G,,. The black dots are the “father” nodes
and the white dots are the “children”. The thick lines links the children to their father.
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mation from different values of the quasimomentum and from different iterations has
been done by the function FatherMesh, which implements the relation father-children
for the nodes of consecutive meshes G,, and G,, 11 on the reduced first Brillouin zone
K.ed- In this way we take advantage of the fact that eigenpairs in the same band for
close values of the quasimomentum are very close, too. This is in contrast to what
we have done in the previous section, where we restart the adaptive procedure always
from the same structured mesh 7; for each value of the quasimomentum.

Finally, we have to define some parameters in order to use Algorithm 4. These pa-
rameters are: 6 and 6§, which are already been introduced for Algorithm 3; an integer
value max;j; greater than 0, which sets the maximum number of refinements, it plays
the role of max,, as in Algorithm 3; an initial mesh 7y on the primitive cell §2; another
integer value max,, greater than 0; and finally a finite subsequence of length max,, of
real values tol,,, where 0 < tol,,+1 < tol,, < --- < tolg, which prescribe the wanted
tolerance for the approximated band C,,, for each iteration of level A.

Algorithm 4 is convergent in the sense that, if its main repeat-until loop is run infinitely
many times, Cy, will converge to the true band. To prove this statement we are going to
suppose to be able to run Algorithm 4 with max,, = oo and with tol,, values forming
a strictly monotone decreasing sequence converging to 0, in this way the main loop of
Algorithm 4 becomes an infinite loop.

From a standard result in [15], it is well know that the bands of PCF problems are

continuous, in view of this we wrote the following straightforward lemma:

Lemma 5.3.1. Let W,, be the finite dimensional space of elementwise linear functions

on the mesh G,,, then Wy, which is the limit of Wy, when m goes to infinity, is dense

m CO (’Cred)-
Also the next lemma is straightforward. It is an application of Theorem 4.2.16.

Lemma 5.3.2. For any value of m and for any K € Ny, we have that Cp,(K) converges

to the true value C(R).

Proof. In Algorithm 4, with max,,, = co we have that, for any value of m and for any
K € N, the subroutine AFEM is applied infinitely many times to the point <. This is
equivalent to apply Algorithm 1 to the point &, then the convergence of C,,(K) = AL,

to C(R) = A" comes as a consequence of Theorem 4.2.16. U

Theorem 5.3.3 (Convergence to the true band). Let suppose that Ty is fine enough in
the sense of Theorem 4.2.16 for all A\* in the considered band, for all K € K.eq. Then

applying Algorithm 4 with max,, = oo we have that C,, converges to the true band C.

Proof. Let define Noo := |U,,50Nm- Then for any £ € N let us denote by m' the

minimum value such that £ € NV,,,,. Now, using Lemma 5.3.2, we have that the sequence
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formed by C,,(R), for any m > m/, converges to C(<K) when m goes to infinity. So this
implies that, for any K € N, Cn(R) converges to C(K). Because the set of points
Noo is dense in Keq, we conclude that C,,, converges pointwise almost everywhere to C.
Furthermore, C is a continuous function, as well as all the functions in the sequence C,,,
so the pointwise convergence on a dense set of points is enough to imply the uniform

convergence.

O

Finally, we present some numerical results using Algorithm 4. We use the same supercell
used in Section 5.2 and also we shall approximate the band of the trapped mode already
analysed in that section. We are going to compare the results from Algorithm 4 against
the results from the adaptive method presented in the previous section, which consists
in applying Algorithm 3 to each considered value of the quasimomentum with always
the same structured starting mesh. In particular we are interested in comparing the
computational costs of these two approaches.

The starting mesh Gy contains just one element as big as K,sq for the considered
supercell. In this numerical experiment we are going to construct just two refinements
of Gy, namely: G and Go; so we set max,, = 2. Moreover, we set max;; = 2, which
means that for any iteration of level A we are going to refine twice the meshes for
each §© € N, in level B. We also set § = 6 = 0.5. For the sake of clearness we are
not going to consider all the nodes in the sequence of meshes G,,, but just a subset

of them showed in Figure 5-13. So, for m = 0 we are going to consider only the

and £ = (7/15,7/15); finally for m = 2 we are going to consider only the points
R = (n/45,0), K = (2n/45,0), K = (7/45,7/45), K = (2n/45,27/45), K = (7/15,7/45),
K = (m/15,27/45) and K = (27 /45, 7/45).

In our simulation, due to the choice of max;i;, the meshes for all the points in Nj
will be refined at maximum 6 times. For all the points in A7 /N, the meshes will be
refined at maximum 4 times and for all the points in N5 /(NpJN7), the meshes will be
refined at maximum 2 times. In Table 5.21, we compare, for all the considered values
of the quasimomentum, the results from Algorithm 4 against the approximations from
Algorithm 2. In column m we put the minimum value of m such that each considered
point £ € N,,,. In the columns #ref we put for each method the number of refinements
of the mesh on €2 necessary to reach the same accuracy. In the run of Algorithm 4 a total
number of 28 refinements and a total of 38 computations of discrete eigenpairs have
been done. Instead, summing the values of columns #ref, it is clear that Algorithm 2
needed 60 refinements, which correspond to 70 computations of discrete eigenpairs, to
reach the same accuracy. In conclusion, the saving of computational power is quite
remarkable. However, the efficiency of Algorithm 4 may depend on how fine is the

mesh Gy and also on all the other parameters that we set.
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Algorithm 4 Efficient method to compute bands
Require: Gy
Require: max,, >0
Require: tol,, > 0, V0 < m < max,,
Require: 0 <0 <1
Require: 0 < 6 <1
Require: max;; > 0
Require: 7y
for all ¥ € N do
T =T,
Co(R):=0
end for
m =20
repeat
for all ¥ € N,, do
(NS 1, ulyq, T, 1) = AFEM(R, FatherMesh(R), 6, 6, tol,,,, maxi)
Crny1(R) == )\fn+1
end for
Refine the mesh G,, and construct Gp,41
m=m+1
until m < max,,

Algorithm 4 Standard adaptivity
‘ m ‘ K ‘ |AE — A" ‘ #ref || |AF — \F| ‘ #ref
0 (0,0) 0.0428 6 0.0428 6
1 (m/15,0) 0.0373 4 0.0336 6
1 (m/15,7/15) 0.0598 4 0.0403 6
2 (w/45,0) 0.0269 2 0.0252 7
2 (2m/45,0) 0.0277 2 0.0261 6
2 (m/45,7/45) 0.0269 2 0.0331 6
2 | (2m/45,27/45) 0.0488 2 0.0337 6
2 (m/15,7/45) 0.0407 2 0.0312 6
2 | (7/15,2m/45) 0.0517 2 0.0622 5
2 | (2m/45,7/45) 0.0324 2 0.0259 6

Table 5.21: Comparison between Algorithm 4 and the standard adaptive method, both
applied to the band of the trapped mode for the TE case problem on a supercell.
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Figure 5-13: A picture of the reduced first Brillouin zone with the points considered in
the simulations.
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Conclusions

The main objective of this work is a new convergent and efficient method for PCFs
based on an adaptive FEM. In order to reach our goal, we had also to prove some new
results and to extend some existing theories. In Chapter 2, we extended the theory in
[51] to the multiple eigenvalue case. This first extension leads us toward new results
in Chapter 3 about a posteriori error estimators in the multiple eigenvalue case. We
have also presented a new estimator for PCF eigenvalue problems and also we have
fully embedded in the a posteriori theory for elliptic eigenvalue problems the fact that
eigenvalues can have multiplicity greater than one. This is particularly clear in all the
reliability and efficiency results which are stated in a way to consider any degree of
multiplicity.

The central part of this work is, of course, the proof of convergence for adaptive finite
element methods for elliptic eigenvalue problems and for PCF problems. At the mo-
ment, these results are stated only for simple eigenvalues, but we would like to extend
them in the future to the multiple eigenvalue case.

Another aspect that we have planed to study further in the future is the dependence of
the convergent results (Theorem 4.1.17 and Theorem 4.2.13 ) on the initial meshes and
on the value of the considered eigenvalues. In particular, we would like to prove results
showing that for a given problem, and considering an eigenvalue A, a value Hj"®* for
the initial mesh is enough in order to trigger the convergence. Such a result will be
very useful in practice, since it will ensure that the method is going to converge to the
correct eigenpair.

In addition, we would like to extend the proof of convergence to higher order finite
elements. When we tried to do this we found that the main difficulty was the extension
of Lemma 4.1.11 to higher orders.

In addition, we would like to note the rich set of numerical and theoretical results
collected in Chapter 5. In Section 5.3 we presented the first convergent adaptive method
to compute bands of spectra for PCFs. Finally, we are proud of the numerical results

in Section 5.1.6 about trapped modes, which are of great interest in applications.
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